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Appliations of Multilinear Forms to CryptographyDan Boneh � Alie Silverberg ydabo�s.stanford.edu silver�math.ohio-state.eduAbstratWe study the problem of �nding eÆiently omputable non-degenerate multilinear mapsfrom Gn1 to G2, where G1 and G2 are groups of the same prime order, and where omputingdisrete logarithms in G1 is hard. We present several appliations to ryptography, explorediretions for building suh maps, and give some reasons to believe that �nding examples withn > 2 may be diÆult.1 IntrodutionThis paper studies some questions in linear algebra and ryptography. Interesting problems inryptography have reently been solved using Weil or Tate pairings on supersingular ellipti urves,or more generally on supersingular abelian varieties [25℄. These appliations inlude one-roundthree-party key exhange [14℄, identity-based enryption [3℄, and short digital signatures [4℄ (seealso [26℄).We show that multilinear generalizations of Weil or Tate pairings would have far-reahingonsequenes in ryptography. Setion 3 desribes the desired properties for a multilinear form.Setions 4 to 6 give several appliations. Suh forms would enable seure broadast enryptionwith very short broadasts and private keys, a unique signature sheme, and one-round multi-partykey exhange. The main question is how to build the required multilinear maps. We now havethe means and the opportunity. But do we have the motive? In Setion 7 we explore the questionof whether multilinear generalizations of Weil or Tate pairings an ome from geometry, or evenjust from a \motive", in the sense of [13℄. We give evidene that it might not be possible to �ndryptographially useful multilinear forms within the realm of algebrai geometry (i.e., oming froman underlying urve, surfae, or higher-dimensional variety), exept for the ase of bilinear pairingson abelian varieties and \trivial" ases. This suggests that genuinely new tehniques might beneessary to onstrut multilinear maps with the desired properties.2 Notation and De�nitionsWe �rst reall some standard notation and de�nitions that will be used throughout the paper.1. The set of all �nite length binary strings is denoted f0; 1g�, and the set of all binary stringsof length m is denoted f0; 1gm.�Boneh thanks the Pakard foundation and the DARPA DC program.ySilverberg thanks PARC, the Stanford University Mathematis Department, and NSF (grant DMS-9988869).1
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2. When we say that A(x) is a randomized algorithm, we mean that A(x) is the random variableA(x;R), where R is a uniform random variable in f0; 1gm, and where A(x; r) is a funtionwith inputs x and r 2 f0; 1gm.3. The probability of an event D is denoted Pr[D℄. For a �nite set S we use x S to de�ne arandom variable x that piks an element of S uniformly at random (that is, for all  2 S wehave Pr[x = ℄ = 1=jSj). For a randomized algorithm A we use x A(y) to de�ne a randomvariable x that is the output of algorithm A on input y. In other words, for all  2 f0; 1g�we have Pr[x = ℄ = Pr[A(y; r) = ℄. We let Pr[b(x) : x A(y)℄ denote the probability thatb(x) is true where x is the random variable de�ned by x A(y).4. We say that a funtion � : Z+ ! R+ is negligible if for all d > 0 and suÆiently large n wehave 0 < �(n) < 1=nd. For example, �(n) = 1=2n is a negligible funtion.5. A funtion f(n) : Z+! R+ is super-polynomial if for all  > 0 and all suÆiently large n wehave f(n) � n. A funtion f(n) : Z+! R+ is super-linear if for all  > 0 and all suÆientlylarge n we have f(n) � n.Next, we give a de�nition of an n-multilinear map. We view the groups G1 and G2 as multi-pliative groups.De�nition 2.1. Let G1; G2 be two groups of the same prime order. We say that a map e : Gn1 ! G2is an n-multilinear map if it satis�es the following two properties:1. if a1; : : : ; an 2 Z and x1; : : : ; xn 2 G1 thene(xa11 ; : : : ; xann ) = e(x1; : : : ; xn)a1���an :2. The map e is non-degenerate in the following sense: if g 2 G1 is a generator of G1 thene(g; :::; g) is a generator of G2.Let G1; G2 be �nite yli groups of order ` and let g be a generator of G1. Reall that thedisrete log funtion in G1 is de�ned as Dlogg(g�) = �, where � 2 Z and 1 � � � `. The disretelog problem in G1 is to ompute the disrete log funtion in G1. We are mostly interested ingroups where this problem is intratable. It is well known [24℄ that omputing disrete log in G1 isreduible to omputing disrete log in all prime order subgroups of G1. Therefore, we an and willrestrit our attention to groups G1; G2 of prime order `.We note that an eÆiently omputable n-multilinear map e : Gn1 ! G2 an be used to reduethe disrete log problem in G1 to the disrete log problem in G2. Hene, if disrete log in G1 is hardthen disrete log in G2 must also be hard. This redution is a straightforward generalization of theMOV redution [18℄. Let g; h 2 G1 suh that h = g�. Computing � given g and h is a disrete logproblem in G1. To redue this to a disrete log problem in G2 ompute the following two values:x = e(g; g; : : : ; g) and y = e(h; g; g; : : : ; g):Then by n-multilinearity we have that y = x� as elements in G2. Hene, if the disrete log problemin G1 is hard then disrete log in G2 must also be hard. The onverse is not known to be true.Next, our goal is to de�ne a ryptographi n-multilinear map generator. Roughly speaking, aryptographi n-multilinear map e : Gn1 ! G2 is an n-multilinear map suh that (1) the groupation in G1 and G2 is eÆiently omputable, (2) the map e is eÆiently omputable, and (3) thereis no eÆient algorithm to ompute disrete log in G1.2
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We will �rst de�ne a multilinear map generator. Sine we are studying omputational problemson the groups G1 and G2 we annot treat these groups as abstrat algebrai objets. Instead, wehave to �x an expliit representation of group elements and have to ensure that all group operationsand n-multilinear maps are omputable by e�etive algorithms. Throughout the paper we representgroup elements as binary strings.De�nition 2.2. A multilinear map desription � 2 f0; 1g� is a desription of two groups G1 andG2 of the same prime order, an n-multilinear map e : Gn1 ! G2 for some n, and funtions prodb,inverseb, map, and testb, for b = 1; 2, satisfying:� If b = 1; 2 and x; y 2 Gb, then prodb(�; x; y) = xy and inverseb(�; x) = x�1.� If x1; : : : ; xn 2 G1, then map(�; x1; : : : ; xn) = e(x1; : : : ; xn).� If b = 1; 2 and x 2 f0; 1g�, then testb(�; x) = yes if and only if x 2 Gb.For example, a multilinear map desription � might inlude a prime power q, oeÆients forequations that de�ne an abelian variety (or ellipti urve) A de�ned over Fq , and the oordinatesof a point P 2 A(Fq ) of prime order `. The group G1 would be the group generated by P , and G2would be the group of `-th roots of unity in F�qd , where d is the order of q (mod `). With n = 2the map e : G21 ! G2 ould be a modi�ed Weil pairing (as in x7 below).De�nition 2.3. A multilinear map generator G = G(t; n) is a randomized algorithm that runsin polynomial time in (positive integer) inputs t and n, and outputs a tuple (�; g; `). Here � is amultilinear map desription suh that the funtions prodb, inverseb, map, and testb run in polynomialtime in t and n, ` is the order of the groups G1 and G2 de�ned by �, and g is some generator ofG1.The point of the seurity parameter t in De�nition 2.3 will beome apparent when we de�neryptographi multilinear map generators below. This parameter will determine the size of thegroups G1 and G2. The size of G1 as a funtion of t must be large enough so that no polynomialtime algorithm in t an ompute disrete log in G1.Let G be a multilinear map generator. De�ne a randomized algorithm A's advantage in omput-ing disrete log to be the probability that A is able to ompute disrete log in the group G1 = hgide�ned by G(t; n). In other words,AdvDlogG;A;n(t) = Pr [A (�; g; gr) = r : (�; g; `) G(t; n); r  Z=`Z℄ :De�nition 2.4. A multilinear map generator G is a ryptographi multilinear map generator if forall polynomial time algorithms A (polynomial in t) and all n > 1, the funtion AdvDlogG;A;n(t) isnegligible.3 Multilinear Maps: Problem StatementOpen problem. The entral open problem posed in this paper is the onstrution of rypto-graphi multilinear map generators when n > 2.For n = 2, (modi�ed) Weil and Tate pairings on ellipti urves are believed to give ryptographibilinear map generators. The onstrutions in this paper typially need n on the order of 103.3
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3.1 Complexity assumptionsFor some of the appliations we present, the intratability of disrete log is not suÆient to proveseurity. We will need to make slightly stronger assumptions. We list these assumptions here. Thereader may wish to skip this setion for now and refer bak to it as needed in the later setions.For the remainder of this setion, �x a multilinear map generator G.The multilinear DiÆe-Hellman assumption. The multilinear DiÆe-Hellman assumptionsays that given g; ga1 ; : : : ; gan+1 inG1, it is hard to ompute e(g; : : : ; g)a1 ���an+1 inG2. More preisely,de�ne a randomized algorithm A's advantage in solving the multilinear DiÆe-Hellman problem tobe the probability that A is able to ompute e(g; : : : ; g)a1 ���an+1 from g; ga1 ; : : : ; gan+1 , i.e.,AdvDHmG;A;n(t) =Pr"A(�; g; ga1 ; : : : ; gan+1) = e(g; : : : ; g)a1���an+1 : (�; g; `) G(t; n);(a1; : : : ; an+1) (Z=`Z)n+1 # :De�nition 3.1. We say the multilinear map generator G satis�es the multilinear DiÆe-Hellmanassumption if for all polynomial time algorithms A (polynomial in t) and all n > 1, the funtionAdvDHmG;A;n(t) is negligible.The DiÆe-Hellman inversion assumption. The idea of the assumption is that given g; gb 2G1 it should be hard to ompute e(g; : : : ; g)1=b 2 G2. De�ne a randomized algorithm A's advantagein solving the DiÆe-Hellman inversion problem to be the probability that A is able to omputee(g; : : : ; g)1=b from g; gb, i.e.,AdvDHinvG;A;n(t) = Pr hA(�; g; gb) = e(g; g; : : : ; g)1=b : (�; g; `) G(t; n); b (Z=`Z)n+1i :De�nition 3.2. The multilinear map generator G satis�es the DiÆe-Hellman inversion assumptionif for all polynomial time algorithmsA (polynomial in t) and all n > 1, the funtion AdvDHinvG;A;n(t)is negligible.The generalized DiÆe-Hellman assumption. The assumption says that given ga1 ; : : : ; ganin G1 and given all the subset produts gQi2S ai 2 G1 for any strit subset S � f1; : : : ; ng, it ishard to ompute ga1 ���an 2 G1. Sine the number of subset produts is exponential in n we provideaess to all these subset produts through an orale (an orale is a funtion that an be evaluatedin unit time). Let (�; g; `) be an output of G(t; n). For a vetor ~a = (a1; : : : ; an) 2 (Z=`Z)n, de�neO�;g;~a to be an orale that for any strit subset S � f1; : : : ; ng responds with:O�;g;~a(S) = gQi2S ai 2 G1:De�ne a randomized algorithm A's advantage in solving the generalized DiÆe-Hellman problem tobe the probability that A is able to ompute ga1���an given aess to the orale O�;g;~a(S). In otherwords, AdvDHgenG;A;n(t) = Pr"AO�;g;~a(�; g) = ga1���an : (�; g; `) G(t; n);~a = (a1; : : : ; an) (Z=`Z)n # :Note that the orale only answers queries for strit subsets of f1; : : : ; ng.De�nition 3.3. We say G satis�es the generalized DiÆe-Hellman assumption if for all polynomialtime algorithms A (polynomial in t) and all n > 1, the funtion AdvDHgenG;A;n(t) is negligible.4
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4 One-Round n-way DiÆe-Hellman Key ExhangeWe give several appliations of n-multilinear maps to ryptography. We start with a simple appli-ation: onstruting a one-round n-way DiÆe-Hellman key exhange protool. Joux [14℄ showedhow Weil and Tate pairings an be used for a one-round 3-way seret key exhange. Using ann-multilinear map, Joux's protool generalizes naturally to a one-round (n + 1)-way seret keyexhange.Consider n + 1 parties who wish to set up a onferene key using a one-round protool. The\one-round" refers to the fat that eah party is only allowed to broadast one value to all otherparties. All n + 1 broadasts our simultaneously. One all n + 1 parties broadast their valueseah party should be able to loally ompute a global shared seret S. The seret S will then beused to derive a onferene key. An eavesdropper, seeing only the publi broadast values, shouldnot be able to ompute the global seret S. This is a diret generalization of the DiÆe-Hellmanprotool to n+1 parties (DiÆe-Hellman is designed for two parties). Solutions to this problem areuseful in reduing the number of round trips in group key management protools [28℄. This is along-standing open problem.More preisely, a one-round n-way onferene key exhange sheme onsists of the followingthree randomized polynomial time algorithms:Setup(t; n): Takes a seurity parameter t 2 Z+ and the number of partiipants n. Itruns in polynomial time in t; n and outputs publi parameters �dh 2 f0; 1g�.Publish(�dh; i): Party i 2 f1; : : : ; ng runs algorithm Publish(�dh; i). The algorithm out-puts a pair (pubi;privi), with both in f0; 1g�. Party i broadasts pubi to all otherparties, and keeps privi seret.KeyGen(�dh; j;privj; fpubigi6=j): Party j 2 f1; : : : ; ng ollets the publi broadastssent by all other parties. It then runs algorithm KeyGen giving it all these publivalues and its seret value privj . Algorithm KeyGen outputs a onferene key S.The onsisteny requirement is that for all j = 1; : : : ; n, algorithm KeyGen produes the sameonferene key S. In other words, all n parties generate the same seret onferene key. The shemeis seure if no polynomial time algorithm, given all n publi values (pub1; : : : ;pubn), will produethe seret onferene key S with non-negligible probability.De�nition 4.1. A one-round n-way onferene key exhange sheme fSetup;Publish;KeyGeng isseure if for all polynomial time randomized algorithms A the following probability:AdvDHA;n(t) = Pr24A(�dh; pub1; : : : ;pubn) = S : �dh  Setup(t; n);(pubi;privi) Publish(�; i);S  KeyGen(�; 1;priv1; fpubigi6=1) 35is a negligible funtion in t.We present a one-round (n+1)-way key exhange protool from an n-multilinear map generator G.Setup(t; n+ 1): Run algorithm G(t; n) to get (�; g; `). Let e : Gn1 ! G2 be the n-multilinear map de�ned by �. Then g is a generator of G1 and ` is the order ofG1. Output �dh = (�; g; `) as the publi parameters.Publish(�dh; i): Pik a random integer ai 2 [1; `� 1℄. Compute hi = gai 2 G1.Output (pubi;privi) where pubi = hi and privi = ai.Party i broadasts hi to all other partiipants and keeps ai seret.5
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KeyGen(�dh; j;privj; fpubigi6=j): Let privj = aj and pubi = hi.Party j omputes the onferene key S as follows:S = e(h1; : : : ; hj�1; hj+1; : : : ; hn+1)aj 2 G2:This S is the output of algorithm KeyGen on input (�dh; j;privj ; fpubigi6=j).Note that S = e(g; g; : : : ; g)a1a2���an+1 . Hene, all n+ 1 parties will obtain the same onferene keyS. The following result is immediate from De�nition 3.1.Proposition 4.2. Let G be a multilinear map generator. If G satis�es the multilinear DiÆe-Hellman assumption then the protool above is a seure one-round (n + 1)-way onferene keyexhange sheme for every n > 1.We note that to use the global seret S as a key for a symmetri ipher one would have toprove that S an be onverted into a binary string of a ertain length that is indistinguishablefrom a random string of the same length. This would require a stronger omplexity assumptionthan the multilinear DiÆe-Hellman assumption. Alternatively, one ould use hard-ore bits of eto generate the global seret one bit at a time, but this would require many invoations of thekey exhange protool above. This issue is analogous to the issue that omes up when using thestandard DiÆe-Hellman seret as a seret enryption key [2℄.5 Unique Signatures and Proofs for the n-way DiÆe-Hellman Re-lationOur next appliation is useful for building unique signatures and veri�able pseudo random funtions(VRF's) [19℄. Let G1 be a group of prime order ` with a generator g.De�nition 5.1. We say that (g; g1; : : : ; gn; h) 2 Gn+21 is an n-way DiÆe-Hellman tuple if g gener-ates G1 and there exist integers a1; : : : ; an 2 [1; ` � 1℄ suh that gi = gai and h = ga1���an .Suppose there is no eÆient algorithm for the disrete log problem inG1. We study the followingproblem: is there an eÆient algorithm A that takes an arbitrary tuple I = (g; g1; : : : ; gn; h) 2 Gn+21as input and returns yes if and only if I is an n-way DiÆe-Hellman tuple? We all this the n-way deision DiÆe-Hellman problem. For n = 2 one obtains the standard Deision DiÆe-Hellmanproblem [2℄.Reently Joux and Nguyen [15℄ showed that the group of points on a supersingular elliptiurve over a �nite �eld is an example of a group where disrete log is (presumably) hard, but thestandard (2-way) Deision DiÆe-Hellman problem is easy. A generalization of their idea using ann-multilinear map would solve the n-way deision DiÆe-Hellman problem.Algorithm 5.2. Suppose e : Gn1 ! G2 is an n-multilinear map. Let g be a generator of G1 andlet I = (g; g1; : : : ; gn; h). We test if I is an n-way DiÆe-Hellman tuple as follows:1. Compute A = e(g1; : : : ; gn) 2 G2.2. Compute B = e(h; g; g; : : : ; g) 2 G2.3. Test if A = B. If so, output yes. If not, output no.The following simple result shows that the algorithm's output is always orret.6
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Proposition 5.3. Suppose that e : Gn1 ! G2 is an n-multilinear map, and I = (g; g1; : : : ; gn; h) 2Gn+21 , where g is a generator of G1. Algorithm 5.2 outputs yes given I as input if and only if I isan n-way DiÆe-Hellman tuple.Proof. Write gi = gai and h = gb. Thene(g1; : : : ; gn) = e(ga1 ; : : : ; gan) = e(g; : : : ; g)a1 ���an ;e(h; g; g; : : : ; g) = e(gb; g; g; : : : ; g) = e(g; g; : : : ; g)b:The non-degeneray of e implies that e(g; g; : : : ; g) is a generator of G2. It now follows thate(g1; : : : ; gn) = e(h; g; g; : : : ; g) if and only if b � a1 � � � an (mod `).We have just shown that a ryptographi n-multilinear map generator would give rise to groupswhere disrete log is hard, but the n-way deision DiÆe-Hellman problem is easy.5.1 Unique Signatures and Veri�able Pseudo Random FuntionsUsing Algorithm 5.2 we give a simple onstrution for a unique signature sheme and Veri�ablePseudo Random Funtions. We �rst reall the de�nition of unique signatures [11℄. Intuitively, aunique signature sheme is a digital signature sheme where every message has a unique digitalsignature (in most seure signature shemes there are many valid signatures for a given message).Unique signature shemes were known to exist in the ommon random string model [11℄ and inthe random orale model [1℄, but until the results of Miali et al. [19℄ there were no onstrutionsfor suh shemes in the standard model de�ned below. Unique signatures are used to onstrutVeri�able Pseudo Random Funtions, whih are a useful tool in ryptographi protool design [19℄.De�nition 5.4. An n-bit unique signature sheme (whih is used to sign n-bit messages) onsistsof three algorithms KeyGen;Sign;Verify de�ned as follows:KeyGen(t): A randomized algorithm that outputs a signing key SK and a veri�ation key VK.Sign(M;SK): A deterministi algorithm that takes as input a message M 2 f0; 1gn and a signingkey SK and outputs a signature S.Verify(M;S;VK) : A deterministi algorithm that takes as input a messageM 2 f0; 1gn, a signatureS, and a veri�ation key VK and outputs yes or no.These algorithms must satisfy the following requirements:Consisteny For every key pair (VK;SK) produed by the KeyGen algorithm and every messageM 2 f0; 1gn we have that Verify(M;Sign(M;SK);VK) = yes:Uniqueness For every key pair (VK;SK) produed by the KeyGen algorithm, every messageM 2 f0; 1gn, and every S1 and S2, we have thatVerify(M;S1;VK) = Verify(M;S2;VK) = yes ) S1 = S2:Seurity for a unique signature sheme is de�ned as for standard signatures and is alled seurityagainst existential forgery under an adaptive hosen message attak [10℄. This notion is de�ned bythe following game between a hallenger and an attaker A:7
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Step 1. The hallenger runs algorithm KeyGen(t) to generate a key pair (VK;SK). Itgives VK to the attaker and keeps SK to itself.Step 2. The attaker A issues �nitely many queries M1;M2; : : : 2 f0; 1gn and reeivesthe signatures S1; S2; : : : on these queries. These queries an be issued adaptively,namely, the attaker an hoose query Mi after seeing the signatures S1; : : : ; Si�1.Step 3. Finally, the attaker A outputs a message signature pair (M;S) where M 62fM1;M2; : : :g.The attaker A wins the game if Verify(M;S;VK) = yes. Let AdvSigSig;A(t) denote theprobability that A wins the game.De�nition 5.5. We say that an n-bit unique signature sheme Sig is seure against existentialforgery under an adaptive hosen message attak if for all polynomial time attak algorithms A(polynomial in t) the funtion AdvSigSig;A(t) is negligible.We give a simple onstrution for unique signatures. The onstrution is similar to a PseudoRandom Funtion (PRF) based on the Deision DiÆe-Hellman problem (DDH) due to Naor andReingold [23℄. Our onstrution is based on a reent result due to Lysyanskaya [16℄.Let G be a multilinear map generator. The following unique signature sheme is used to signn-bit messages:KeyGen(t): 1. Run algorithm G(t; n) to generate (�; g; `).2. Pik random a1;0; a1;1; : : : ; an;0; an;1 2 f1; : : : ; `� 1g.3. Set the signing key SK = (�; a1;0; a1;1; : : : ; an;0; an;1), andthe veri�ation key VK = (�; g; ga1;0 ; : : : ; gan;1 ).Sign(M;SK): Let M = m1 : : : mn 2 f0; 1gn. Output:S = ga1;m1 �a2;m2 ���an;mn 2 G1:Verify(M;S;VK): Write VK = (�; g; g1;0; : : : ; gn;1). Test if I = (g; g1;m1 ; : : : ; gn;mn ; S)is an n-way DiÆe-Hellman tuple using Algorithm 5.2. Output yes if I is an n-wayDiÆe-Hellman tuple and output no otherwise.For a given M and VK there is only one S 2 G1 for whih (g; g1;m1 ; : : : ; gn;mn ; S) is an n-wayDiÆe-Hellman tuple. Hene, the sheme is a unique signature sheme. Note that there is somenegligible probability that two di�erent messages have the same signature.Next, we argue that the sheme is a seure unique signature sheme. Seurity is based on thegeneralized DiÆe-Hellman assumption (De�nition 3.3).Theorem 5.6. Suppose the multilinear map generator G satis�es the generalized DiÆe-Hellmanassumption. Then for all �xed n 2 Z+, the n-bit unique signature sheme above is seure againstexistential forgery under an adaptive hosen iphertext attak. Conretely, an attak algorithm Awith advantage AdvSigSig;A(t) in forging signatures gives rise to an algorithm B for the generalizedDiÆe-Hellman problem in G with advantageAdvDHgenG;B;n(t) � AdvSigSig;A(t)=2n:Proof. The proof is essentially idential to the proof of seurity given by Lysyanskaya [16℄.8
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Conrete parameters. Signature shemes in pratie are mostly used to sign short messagesthat are the output of a ollision resistant hash funtion suh as SHA-1. Using the terminologyabove, to sign a message M of arbitrary length we ompute S = Sign(H(M);SK) where H is someollision resistant hash. Therefore, by Theorem 5.6, if H outputs n-bit strings then we need ann-multilinear map generator G for whih 2nAdvDHgenG;B;n(t) is negligible. In pratie we often usen = 160 sine the output of SHA-1 is 160-bit strings. Thus to give onrete parameters, we needa map e : G1601 ! G2 where the generalized DiÆe-Hellman problem annot be solved in time 280with advantage greater than 1=2240 (this will ensure that no 280-time algorithm an existentiallyforge signatures with probability greater than 1=280). Sine the DiÆe-Hellman problem annot(urrently) be solved in time 280 with advantage greater than 1=2240 for the group generated bya point of suÆiently large order on a supersingular ellipti urve over a (suÆiently large) �nite�eld, Weil pairings yield bilinear maps with the desired seurity parameters. We hope that a 160-multilinear map with the same seurity parameters for the generalized DiÆe-Hellman problem analso be built. We note that, as in [16℄, the redution in Theorem 5.6 an be made more eÆient byrestriting the message spae to odewords in a ertain error orreting ode.Signature length. Note that a signature in the sheme above onsists of a single group elementin G1. This means that this signature sheme an potentially produe signatures that are as shortas BLS signatures [4℄. BLS signatures are existentially unforgeable in the random orale model,whereas the advantage of the signature sheme above is that it is existentially unforgeable in thestandard seurity model (no random orales are needed).To onlude the setion we note that Miali et al. [19℄ show that unique signatures give riseto Veri�able Pseudo Random Funtions (VRF). Hene, the onstrution using n-multilinear mapsalso gives a simple onstrution for VRF's.6 Broadast Enryption with Short Keys and TransmissionsBroadast enryption [8℄ appears to be the most interesting appliation to date for n-multilinearmaps. We begin by desribing the broadast enryption problem, survey some of the existing work,and then desribe a solution using n-multilinear maps.6.1 The broadast enryption problemBroadast enryption involves one broadaster and n reeivers. Eah reeiver is given a uniqueprivate key. The broadaster is given a broadaster key. The broadaster wishes to broadastmessages to a spei� subset S � f1; : : : ; ng of reeivers (say, those reeivers that previously paidto reeive the broadast). Any reeiver in S should be able to use its private key to derypt thebroadast. However, even if all reeivers outside of S ollude they should not be able to deryptthe broadast. More preisely, a broadast enryption sheme is made up of three randomizedpolynomial time (in t and n) algorithms:Setup(t; n): Takes as input a seurity parameter t 2 Z+ and the number of reeivers n. It outputsn private keys d1; : : : ; dn and a sender key T .Enrypt(S; T ): Takes as input a subset S � f1; : : : ; ng, and sender key T . It outputs a pair (Hdr;K)where Hdr is alled the header and K is a message enryption key. Let CM be the enryptionof the message body M under the symmetri key K. The broadast to users onsists of9
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(S;Hdr; CM ). The pair (S;Hdr) is often alled the full header and CM is often alled thebroadast body.Derypt(S; di;Hdr): Takes as input a subset S � f1; : : : ; ng, a reeiver key di, and a header Hdr.If i 2 S, then the algorithm outputs the message enryption key K. The key K an then beused to derypt CM and obtain the message body M .To state a (simple) seurity requirement we de�ne the following game between an attak algo-rithm A and a hallenger.Step 1. The hallenger takes (t; n) as input. It runs Setup(t; n) to generate a senderkey T and n private keys d1; : : : ; dn.Step 2. Algorithm A outputs a set S � f1; : : : ; ng of reeivers where it wants to mountan attak. The hallenger gives A all private keys dj for whih j 62 S.Step 3. The hallenger runs the Enrypt algorithm to obtain (Hdr;K) = Enrypt(S; T ).It gives Hdr to algorithm A.Step 4. Algorithm A outputs a key K 0 and wins the game if K = K 0.Let AdvBrA;n(t) denote the probability that A wins the game when the hallenger isgiven (t; n) as input.Observe that this game models an attak where all users not in the set S ollude to try andexpose a broadast intended for users in S only. The set S is hosen adversarially.De�nition 6.1. We say that the broadast enryption sheme is seure if for all polynomial timeattak algorithms A and for all n > 1 the funtion AdvBrA;n(t) is negligible.Note that in the attak game above the adversary is non-adaptive | it requests the entire setof keys S at one. An adaptive adversary ould request user keys adaptively. That is, it woulddeide to request the private key for user ir after seeing the private keys for users i1; i2; : : : ; ir�1.Here we only onsider non-adaptive adversaries.The question is how to build broadast enryption shemes where both the header size andprivate key size are small as a funtion of the number n of reeivers. One trivial onstrution givesa seure broadast enryption sheme where the size of the private keys di is independent of n,but unfortunately the header size is linear in n. Another trivial onstrution gives a broadastenryption sheme where the size of the header Hdr is independent of n, but the size of eahprivate key di is exponential in n. These are two extremes of the spetrum. Reently Naor-Naor-Lotspieh [22℄ gave an elegant onstrution where eah private key onsists of O((log n)2) enryptionkeys for a symmetri enryption sheme. The header onsists of O(n�jSj) enryptions of a messagekey using the symmetri enryption sheme. When the size of the symmetri enryption key is k-bitsthe system has the following parameters:private-key-size = O(k(log n)2) ; header-size = O(k(n� jSj)):Halevi and Shamir [12℄ showed that the private key size an be redued to approximately O(k log n).This broadast system is designed to broadast to large sets S, i.e., when the size of S is lose to n,so that n� jSj is small. The value of k depends on the seurity parameter t. We must ensure thata polynomial time algorithm (in t) annot san through the entire set of symmetri keys, a set ofsize 2k. Therefore, for simpliity we say that k must be at least (log t)2 for some onstant  > 0.10
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In fat, any super-linear funtion in log t will do. For onsisteny with the notation in this paperwe say that the sheme, with the improvement of Halevi-Shamir, has the following parameters:private-key-size = O �(log t)2 log n� ; header-size = O �(log t)2(n� jSj)� :A entral open problem in this area is whether one an build a seure broadast enryptionsheme where both the size of the header and the size of eah private key di depend at mostlogarithmially on n. We note that Fiat-Naor [8℄ and Chik-Tavaras [6℄ gave onstrutions basedon RSA that meet this requirements. However, these onstrutions either do not resist ollusion ofusers [8℄ outside the set S, or the onstrution an only handle a small number [6℄ of reeiver setsS.6.2 An eÆient solution using n-multilinear mapsUsing n-multilinear maps it is possible to give an eÆient solution to the broadast enryptionproblem (eÆient in terms of private key size and header size). We onstrut a seure broadastsheme with the following parameters:private-key-size = O((log t)2) ; header-size = 0:In fat, (log t)2 an be replaed by any super-linear funtion in log t.Let G be a multilinear map generator and let n be the intended number of reeivers. Let (�; g; `)be an output of G(t; n). The order of G1 must be suÆiently large to make disrete log diÆult.We assume elements in G1 are represented as binary strings of length O((log t)2). Sine we alwaysassume t > n, the important point here is that the length of elements in G1 depends at mostlogarithmially on n.We will also �x a funtion Fm;� : f0; 1gm ! Gn1 . We all f0; 1gm the seed spae. We will needm = m(t) to be a funtion of the seurity parameter t. The funtion m(t) will be determined later.For a given seed a 2 f0; 1gm, a given set S � f1; : : : ; ng, and a given g 2 G1 we de�ne anauxiliary funtion �S;a;g : f1; : : : ; ng ! G1 as follows:�S;a;g(i) = � gi if i 2 Sg otherwisewhere Fm;�(a) = (g1; : : : ; gn). We desribe the new broadast enryption sheme by desribing thethree algorithms Setup, Enrypt, and Derypt.Setup(t; n): Run algorithm G(t; n) to generate (�; g; `).Pik a random � 2 [1; `� 1℄.Pik a random a 2 f0; 1gm and write Fm;�(a) = (g1; : : : ; gn) 2 Gn1 .The sender key is T = (�; g; a; �).The i-th reeiver key is di = (i;�; g; a; ui) where ui = g�i .Enrypt(S; T ): To transmit to a set S do:Step 1. Compute KS = e��S;a;g(1); : : : ;�S;a;g(n)�� 2 G2.Step 2. Output KS as the message enryption key. The header Hdr is the empty string "(in other words, the size of the header is zero).11
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Derypt(S; di; "): To obtain the message enryption key KS using di, ompute:KS = e��S;a;g(1); : : : ;�S;a;g(i� 1); ui; �S;a;g(i+ 1); : : : ;�S;a;g(n)�:The seurity of the system relies on the DiÆe-Hellman inversion assumption (De�nition 3.2).We show that an attak on the broadast enryption sheme leads to an algorithm that an solvethe DiÆe-Hellman inversion problem for G. Unfortunately, the proof requires that the funtionFm;� : f0; 1gm ! Gn1 be modeled as a random orale (see [1℄ for the de�nition; essentially, arandom orale implements a funtion hosen uniformly at random from the set of all funtionsfrom the domain to the range).Theorem 6.2. Suppose the multilinear map generator G satis�es the DiÆe-Hellman inversionassumption. Furthermore, suppose the funtion Fm;� : f0; 1gm ! Gn1 is a random orale. Then thebroadast enryption sheme above is seure as long as m = m(t) is a super-linear funtion in log t(e.g., m(t) = (log t)2).Proof. Suppose there is a polynomial time attaker A that wins the broadast enryption gamewith non-negligible probability, i.e., �(t) = AdvBrA;n(t) > 1=t for some  > 0. Let T (t) be therunning time of algorithm A. We know that T (t) < td for some d > 0. We build an algorithm Bfor solving the DiÆe-Hellman inversion problem whereAdvDHinvG;B;n(t) > �(t)� T (t)2m(t) � T (t) :Sine m(t) is a super-linear funtion in log t we know that 2m(t) is super-polynomial and thereforeT (t)2m(t)�T (t) is a negligible funtion. It follows that AdvDHinvG;B;n(t) is non-negligible, and hene Bwill violate the DiÆe-Hellman inversion assumption for G.We desribe algorithm B. Let (�; g; `)  G(t; n). As usual, � de�nes an n-multilinear mape : Gn1 ! G2. Algorithm B is given � and g; h 2 G1. Write h = gb where b 2 [1; ` � 1℄. AlgorithmB's goal is to onstrut e(g; g; : : : ; g)1=b, the b-th root of e(g; g; : : : ; g) in G2.Algorithm B(�; g; h) works by running A as follows:Fm;�-queries. At any time algorithm A may query the orale for the funtion Fm;�. To answerthese queries B maintains an F -list onsisting of tuples (a; (g1; : : : ; gn)). Initially the F -listis empty. When A issues a query for Fm;�(a) with a 2 f0; 1gm, algorithm B heks whethera appears as the �rst entry of some tuple (a; (g1; : : : ; gn)) on the F -list. If so, B replies withFm;�(a) = (g1; : : : ; gn). Otherwise, B piks a random tuple (g1; : : : ; gn) 2 Gn1 , appends thetuple (a; (g1; : : : ; gn)) to the F -list, and responds to A with Fm;�(a) = (g1; : : : ; gn).Step 1. At the beginning of the attak game, algorithm A outputs a subset of users S � f1; : : : ; ng.Algorithm B needs to respond with all private keys for users i 62 S. It does so as follows:1. Pik a random a 2 f0; 1gm. If a already appears as the �rst entry of some tuple on theF -list, algorithm B outputs fail and terminates the simulation. The algorithm failed.2. Otherwise, algorithm B piks random r1; : : : ; rn 2 f1; : : : ; `g. For i 2 S set gi = gri .For i 62 S set gi = hri . Let (g1; : : : ; gn) be the resulting tuple. We de�ne Fm;�(a) =(g1; : : : ; gn) and append the tuple (a; (g1; : : : ; gn)) to the F -list.12
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3. At this point we know that Fm;�(a) = (g1; : : : ; gn). For i 62 S de�ne di = (i;�; g; a; ui)where ui = gri . Note that for all i 62 S we have ui = g1=bi . This means that the setof private keys fdigi62S is valid and onsistent. The (unknown) seret � that wouldnormally be used to generate these keys is de�ned to be � = b�1 mod `.4. For all i 62 S give di to algorithm A.Step 2. We know that algorithm A will respond with the key for the set S, namely:KS = e��S;a;g(1); : : : ;�S;a;g(n)�� = e��S;a;g(1); : : : ;�S;a;g(n)� 1bwith probability at least �(t). By de�nition we haveKS = e(g; g; : : : ; g)b�1Qi2S ri :Step 3. Set  = �Qi2S ri��1 (mod `). Then KS = e(g; g; : : : ; g)1=b. Hene, by omputing KS ,algorithm B obtains the value it was asked to ompute.Algorithm B will produe the orret answer if (1) it does not abort in Step 1, and (2) it reeivesthe orret answer from algorithm A in Step 2. By de�nition of algorithm A we know that event(2) happens with probability at least �(t). To bound the probability for event (1) �rst observe thatA makes at most T (t) queries to the funtion Fm;� prior to Step 1. Algorithm B will abort inStep 1 if it piks a random a 2 f0; 1gm that happens to equal one of A's queries. The probabilitythat A's i-th query is equal to a given that the �rst i� 1 queries are distint and not equal to a isat most 12m�i . Hene, whenever T (t) < 2m, the probability that B aborts in Step 1 is at most12m + 12m � 1 + : : :+ 12m � T (t) + 1 < T (t)2m � T (t) :Hene, AdvDHinvG;B;n(t) = Pr[(1) and (2)℄ � Pr[(2)℄ � Pr[:(1)℄ � �(t)� T (t)2m � T (t)as required.Summary of the parameters. Suppose G satis�es the DiÆe-Hellman inversion assumption.Then by Theorem 6.2, to get a seure broadast enryption sheme we an take m = (log t)2. Theprivate key onsists of an m-bit string and two group elements in G1. By assumption, the twogroup elements are also of length O(m). Hene, we get the following parameters for our sheme:private-key-size = O((log t)2) ; header-size = 0:The full header in the sheme ontains only the desription of the set S. Sine we always assumethat t > n we get that the size of the private key depends logarithmially on the number of reeiversn. Hene, multilinear maps give a broadast enryption sheme with optimal size broadast andvery short private keys. On the down side, enryption and deryption take time proportional to n.
13
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7 Construtions and RestritionsWhere does one look for n-multilinear forms with the desired properties?For n = 2, the answer is Weil and Tate pairings assoiated to abelian varieties. If A is aprinipally polarized supersingular abelian variety over a �nite �eld F , then the Weil pairing êN ,for any positive integer N not divisible by the harateristi of F , is a Galois-equivariant non-degenerate bilinear map êN : A[N ℄� Â[N ℄ ! �N , where A[N ℄ is the N -torsion on A, Â[N ℄ is theN -torsion on the dual abelian variety, and �N is the group of N -th roots of unity. A prinipalpolarization then indues a map eN : A[N ℄ � A[N ℄ ! �N . When A is a supersingular Jaobianvariety, Miller's algorithm [20℄ (see also Setion 5.1 of [17℄ for the ase of ellipti urves) gives aneÆient way to ompute the pairing. If P 2 A(F ) is a point of prime order `, and ' 2 End(A)sends P to an independent point of order `, then the modi�ed Weil pairing ê : G21 ! G2 de�ned byê(P1; P2) = e`(P1; '(P2)) is a 2-multilinear map in the sense of Setion 3, where G1 is the subgroupof A(F ) generated by P , and G2 is the group of `-th roots of unity.Maps that are algebrai (in the sense of being polynomial maps between algebrai varieties) areGalois-equivariant. If A and B are algebrai varieties, f : A! B is a morphism, A, B, and f arede�ned over a �eld F , andK is a Galois extension of F , we say that f is Gal(K=F )-equivariant if forall � 2 Gal(K=F ) and x 2 A(K), we have �(f(x)) = f(�(x)). If a map between algebrai varietiesis omputable, we would expet it to be de�ned by polynomial equations, i.e., to be algebrai, andtherefore Galois-equivariant.Very roughly speaking, a motive over a �eld is something whose \realizations" behave as ifthey were the ohomology groups assoiated to a variety. Aording to 3.1 of [27℄, \one reasonfor Grothendiek's introdution of motives was to serve as analogues of the Jaobian of a urve inhigher dimensions." See [13℄ for a treatment of motives over �nite �elds. We believe that our papergives the �rst appliation of the theory of motives to the �eld of ryptography. We expet thatthe motivi point of view will prove to be valuable in better understanding the mathematis thatunderlies publi key ryptography.If e : Gn1 ! �` is an n-multilinear map where G1 is a group of prime order ` that omesfrom geometry (or from a motive), then it might be reasonable to expet that the underlyinggeometri objet or motive would in fat give rise to a ompatible system of suh maps that areGalois-equivariant, for all but �nitely many primes `. It is reasonable to expet suh a map e toome about by restriting (to one-dimensional subspaes) a multilinear and Galois-equivariant mapV n ! �`, where V is a �nite-dimensional F` -vetor spae with a Galois ation, oming from theGalois ation on the underlying geometri objet (or the `-adi realization of the motive). This isthe ase for Weil and Tate pairings on abelian varieties. (But note that, while the Weil pairingse` are all Galois-equivariant, the modi�ed pairing ê de�ned above only beomes Galois-equivariantafter passing to a �eld where the endomorphism ' is de�ned.) We will give evidene that suggeststhat there is something speial about pairings on abelian varieties that permits this to happen.7.1 PreliminariesWe begin with some notation. If F is a �eld and F s is a separable losure, let GF = Gal(F s=F ).Suppose N 2 Z+ and har(F ) - N . Write �N for the group of N -th roots of unity in F s. Theylotomi harater �N : GF ! (Z=NZ)�is de�ned by �(�) = ��N (�) for every � 2 GF and � 2 �N .14
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Remark 7.1. If V1; : : : ; Vn are �nite-dimensional F` -vetor spaes, then there is a natural one-to-orrespondene between multilinear homomorphismsh : V1 � � � � � Vn ! �`and linear homomorphisms ~h : V1 
 � � � 
 Vn ! �`;with h(x1; : : : ; xn) = ~h(x1 
 : : :
 xn).Lemma 7.2. Suppose F = Fq , N and d are positive integers, har(F ) - N , and �N : GF !(Z=NZ)� is the ylotomi harater. Then �N = �dN if and only if qd�1 � 1 is divisible by N .Proof. We have �N = �dN () �d�1N = 1 () d � 1 is divisible by the order of �N , whih is[F (�N ) : F ℄ where �N is a primitive N -th root of unity. Equivalently, �N 2 Fqd�1 , i.e., N dividesjFqd�1 j = qd�1 � 1.Note that when d = 1, the ondition that N divide qd�1 � 1 is trivially true. As we will seebelow, it is this ondition that makes n-multilinear forms speial in the ase where n = 2.7.2 Tensor produts of Weil pairingsWe next disuss a straightforward generalization of the Weil pairing, namely a tensor produt ofWeil pairings. The linearity is now obvious, as is the Galois-equivariane as a map from A[N ℄2r to�
rN . However, after omposing this map with an isomorphism �
rN ! �N , the resulting map fromA[N ℄2r to �N is Galois-equivariant if and only if qr�1 � 1 is divisible by N , where q is the size ofthe �nite �eld of de�nition.More preisely, suppose that F = Fq , that N and r are positive integers, that gd(N; q) = 1,that A is a prinipally polarized abelian variety over F , and that eN : A[N ℄ � A[N ℄ ! �N is theWeil pairing indued by a prinipal polarization on A. Then the form er;N : A[N ℄2r ! �
rN de�nedby er;N (P1; : : : ; Pr; Q1; : : : ; Qr) = eN (P1; Q1)
 � � � 
 eN (Pr; Qr)is multilinear and GF -equivariant.If r = 1, then er;N is the Weil pairing eN , and er;N is GF -equivariant, bilinear, and alternating.However, the situation is not so nie if r > 1. Fixing a generator � of �N , there is an isomorphismhr;N : �
rN ! �N , indued by hr;N (�a1 
 � � � 
 �ar) = �a1���ar . By Lemma 7.2, the map hr;N is GF -equivariant if and only if qr�1�1 is divisible by N . Thus for �xed r > 1, the Galois-equivariane ofthe omposition hr;N Æ er;N holds for only �nitely many values of N . Therefore for r > 1, the mapshr;` Æ fr;` : A[`℄2r ! �` do not in any meaningful sense �t into a \ompatible system" of mod `maps for in�nitely many primes `. Further, the isomorphism hr;N an only be omputed by solvinga DiÆe-Hellman-like problem, namely, given �a1 ; : : : ; �ar , �nd �a1���ar (without knowing a1; : : : ; ar).7.3 Alternating multilinear mapsWe next onsider alternating multilinear forms (the Weil pairing is one suh). We show that ford-dimensional abelian varieties with d > 1, there are only �nitely many primes ` for whih a non-degenerate alternating multilinear form from A[`℄2d to �` an be Galois-equivariant. In other words,one only obtains a system of alternating, non-degenerate, Galois-equivariant multilinear forms fromA[`℄2d to �` for in�nitely many primes ` when the maps are bilinear pairings and A is an elliptiurve. 15
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Lemma 7.3. Suppose V is an n-dimensional F` -vetor spae. Then:(a) there is a unique (up to saling) multilinear alternating form f : V n � �`;(b) if F = Fq , ` - q, and � : GF ! Aut(V ) is a homomorphism de�ning a Galois ation on V ,then f is GF -equivariant if and only if �` = det(�), where �` : GF ! F�̀ is the ylotomiharater.Proof. It is well-known that the set of alternating n-multilinear maps from an n-dimensional vetorspae to a one-dimensional vetor spae is one-dimensional. We thus have (a). Fix a generator �of �` and a basis fv1; : : : ; vng of V over F` . De�nef(w1; : : : ; wn) = �detAwith wi = Pnj=1 aijvj for i = 1; : : : ; n and A = (aij) 2 Mn(F`). Then f is multilinear andalternating, and is the unique suh map, up to the hoie of generator and basis. Now f is GF -equivariant if and only if for every � 2 GF , we have �(f(v1; : : : ; vn)) = f(�(v1); : : : ; �(vn)). Sine�(f(v1; : : : ; vn)) = �(�) = ��`(�) andf(�(v1); : : : ; �(vn)) = f(�(�)(v1); : : : ; �(�)(vn)) = �det �(�);we have (b).Proposition 7.4. Suppose that ` is prime, that F = Fq , that ` - q, that A is a d-dimensionalabelian variety over F , and that V = A[`℄ is the GF -module of `-torsion on A. Then the alternatingmultilinear form f de�ned in Lemma 7.3(a) above (with n = 2d) is GF -equivariant if and only ifqd�1 � 1 is divisible by `.Proof. Let � : GF ! Aut(V ) be the mod ` representation for A. Writing � for the Frobeniuselement of GF , then det �(�) is the onstant term in the harateristi polynomial of � ating onA[`℄, so det �(�) = qd = �`(�)d. Sine � generates GF , we have det � = �d̀. The result now followsfrom Lemmas 7.3(b) and 7.2.From the point of view of ryptography, one problem with the above alternating map f is thatto ompute it one must express elements of V in terms of the basis fv1; : : : ; vng, and this amounts tosolving the disrete log problem. For example, if fP1; : : : ; P2dg is an F` -basis for A[`℄, and Q = nP1,then to ompute f(Q;Q2; : : : ; Q2d) one begins by trying to ompute n, whih is the disrete log ofQ with respet to P1.Another problem is that Proposition 7.4 provides evidene that when d > 1, this form f is nota very natural map, and therefore is not likely to be easily omputable. In partiular, for �xed A(and therefore q and d), these maps are Galois-equivariant for only �nitely many primes `. Thoughthese maps are de�ned on an algebrai objet, namely an abelian variety, they are not in generalthemselves algebrai, sine they are not in general Galois-equivariant. We elaborate on this furtherin what follows.7.4 MotivesFrom now on, we onsider forms that are not neessarily alternating. In Corollary 7.7 we willshow that if the desired n-multilinear map omes from a motive over a �nite �eld, and is part ofa system of Galois-equivariant mod ` maps for in�nitely many primes `, then n = 1 or 2 (and16
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the motive has weight 2 or 1, respetively). For n = 1, the identity isomorphism �` ! �` givestrivial 1-multilinear maps of weight 2 motives. Weil or Tate pairings on abelian varieties give riseto 2-multilinear maps of weight 1 motives. Note (Remark 2.7 of [21℄) that the ategory of motivesover �nite �elds is generated by Artin motives (whih have weight 0) and abelian varieties (whihhave weight 1). Corollary 7.7 provides evidene that the desired forms will be motivi only in thease of bilinear pairings on abelian varieties and in trivial ases.As alluded to in x7.2, it is not easy to tell when two elements of �
n` are the same, if n > 1. Forpurposes of ryptography, we will therefore only onsider the ases where the range is �`, Z=`Z, orHom(�`;Z=`Z) in what follows.Theorem 7.5. Suppose that ` is prime, that F = Fq , that ` - q, and that V1; : : : ; Vn are �nite-dimensional F` -vetor spaes with GF -ations. Write � for the Frobenius element of GF . Supposef : V1 � � � � � Vn � �` is multilinear and GF -equivariant. Then there are �1; : : : ; �n 2 �F` suhthat �1 � � ��n = q and for eah i, �i is an eigenvalue of � ating on Vi. If �` is replaed by Z=`Z(respetively, Hom(�`;Z=`Z)), then q is replaed by 1 (respetively, 1=q) in the onlusion.Proof. The multilinear map f gives rise to a linear map ~f : V1 
 � � � 
 Vn � �`, as in Remark 7.1.Sine f is GF -equivariant, we have~f Æ �
n(x1 
 � � � 
 xn) = ~f(�(x1)
 � � � 
 �(xn))= � Æ ~f(x1 
 � � � 
 xn) = ~f(x1 
 � � � 
 xn)q:Therefore, ~f(�
n � q)(x1 
 � � � 
 xn) = 0 for all xi 2 Vi and 1 � i � n. Sine ~f 6= 0, the map�
n� q does not surjet onto V1
 � � � 
Vn, and thus is not injetive. Therefore, q is an eigenvalueof �
n. By Proposition 11 on p. A.VII.39 of [5℄ and indution, the set of eigenvalues of �
n isf�1 � � ��n : �i is an eigenvalue for the ation of � on Vig:Sine the Galois ation on Z=`Z is trivial, q is replaed by 1 in the above, if �` is replaed by Z=`Z.Similarly, q is replaed by 1=q if �` is replaed by its dual.As a speial ase, note that if F = Fq , ` - q, V is an n-dimensional F` -vetor spae with a GF -ation, f : V n � �` is multilinear, alternating, and GF -equivariant, and S is the set of eigenvaluesof the ation of � on V , then Lemma 7.3 shows that Q�2S �n� = q, where n� is the multipliity of� as an eigenvalue.Corollary 7.6. Suppose M1; : : : ;Mn are motives over F = Fq that are homogeneous of weightsm1; : : : ;mn, respetively. Assume the Tate Conjeture holds for �-funtions of smooth projetivevarieties over �nite �elds (see (1.14) of [21℄). If ` is prime and ` - q, let (Mi)` be the mod `realization of Mi. Suppose S is an in�nite set of primes ` suh that ` - q and suh that there is aGF -equivariant multilinear homomorphism f` : (M1)`�� � ��(Mn)` � �`. Then m1+ � � �+mn = 2.If �` is replaed by Z=`Z (respetively, Hom(�`;Z=`Z)), then m1+ � � �+mn = 0 (respetively, �2).Proof. Write Si � �Q for the set of eigenvalues of Frobenius ating on Mi. Let T be the �nite setT = fq � �1 � � ��n : �i 2 Sig � �Q :By Proposition 2.2 of [21℄, j�ij = qmi=2 (this follows from the Weil Conjetures, proved by Delignein [7℄). Thus, j�1�2 � � ��nj = q(m1+���+mn)=2. Suppose m1 + � � � +mn 6= 2. Then 0 =2 T . Thereforethere are only �nitely many prime ideals of the ring �Z of algebrai integers that divide elements ofthe �nite set T . However, by Theorem 7.5, for every ` 2 S there is a prime ideal of �Z above ` thatdivides some element of T . Thus, S is �nite. To �nish the proof, replae q by 1 (resp., 1=q) in thede�nition of T . 17
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Corollary 7.7. Suppose M is a motive over F = Fq that is homogeneous of weight m. Assumethe Tate Conjeture holds for �-funtions of smooth projetive varieties over �nite �elds (see (1.14)of [21℄). If ` is prime and ` - q, let M` be the mod ` realization of M . Suppose S is an in�niteset of primes ` suh that ` - q and suh that there is a GF -equivariant multilinear homomorphismf` : M ǹ � �`. Then (m;n) = (2; 1) or (1; 2). If �` is replaed by Z=`Z, then m = 0. If �` isreplaed by Hom(�`;Z=`Z), then (m;n) = (�2; 1) or (�1; 2).7.5 Tate pairingsWe end with a brief disussion of Tate pairings (see Setion 3.3 of [9℄ for more information). Supposethat F = Fq , that K = Fqm , that ` is a prime divisor of qm � 1, and that J is the Jaobian ofa urve of genus � 1 de�ned over F . Then the Tate (or Tate-Lihtenbaum) pairing indues anon-degenerate Gal(K=F )-equivariant bilinear pairingh ; i : J(K)[`℄� J(K)[`℄! �` � K:If P 2 J(K)[`℄ and G1 is the group generated by P , then this pairing indues a Gal(K=F )-equivariant pairing h ; i : G1 �G1 ! �`:If J is supersingular, this map is eÆiently omputable. Note that the Weil pairing is invariantunder �eld extension, while the Tate pairing is not | hanging the �eld K hanges the map.Therefore in at least one way, the Tate pairing an be viewed as a less natural map. This augerswell for the idea that useful pairings in ryptography ould ome from geometry, and yet not haveall possible seemingly good properties (suh as Galois-equivariane). We therefore onlude on theoptimisti note that interesting geometri objets ould still lead to useful n-multilinear maps withn > 2.8 ConlusionsWe gave strong motivation for onstruting ryptographi n-multilinear maps. We showed thatsuh maps give low-bandwidth broadast enryption shemes, unique signature shemes, veri�ablepseudo random funtions, and a one-round onferene key exhange protool. We hope this amplemotivation will eventually lead to an eÆient onstrution for a ryptographi multilinear map. Wealso give evidene that suh maps might have to either ome from outside the realm of algebraigeometry, or our as \unnatural" omputable maps arising from geometry.AknowledgmentsThe authors would like to thank Karl Rubin, Bjorn Poonen, and Joe Buhler for helpful disussions.Referenes[1℄ M. Bellare, P. Rogaway, \Random orales are pratial: a paradigm for designing eÆientprotools", in ACM Conferene on Computers and Communiation Seurity, pp. 62{73,1993. 18



www.manaraa.com

[2℄ D. Boneh, \The deision DiÆe-Hellman problem", in Proeedings of the Third Algorith-mi Number Theory Symposium, Leture Notes in Computer Siene, Vol. 1423, Springer,pp. 48{63, 1998.[3℄ D. Boneh, M. Franklin, \Identity based enryption from the Weil pairing", Leture Notesin Computer Siene, Vol. 2139, Springer, pp. 213-229, 2001.[4℄ D. Boneh, B. Lynn, and H. Shaham, \Short Signatures from the Weil Pairing", Pro. ofAsiarypt 2001, Leture Notes in Computer Siene, Vol. 2248, pp. 514-532, Springer, 2001.[5℄ N. Bourbaki, Elements of Mathematis, Algebra II, Chapters 4{7, Springer, 1990.[6℄ G. Chik, S. Tavares, \Flexible aess ontrol with master keys", in Pro. Crypto '89,pp. 316{322.[7℄ P. Deligne, \La onjeture de Weil. I", Inst. Hautes �Etudes Si. Publ. Math. 43 (1974),273{307.[8℄ A. Fiat and M. Naor, \Broadast enryption", in Pro. Crypto '93, pp. 480{491.[9℄ G. Frey, \Appliations of arithmetial geometry to ryptographi onstrutions", in Finite�elds and appliations (Augsburg, 1999), Springer, 2001, pp. 128{161.[10℄ S. Goldwasser, S. Miali, R. Rivest, \A digital signature sheme seure against adaptivehosen message attaks", SIAM J. of Computing, Vol. 17, No. 2, pp. 281-308, April 1988.[11℄ S. Goldwasser, R. Ostrovsky, \Invariant signatures and non-interative zero knowledgeproofs are equivalent", in Pro. Crypto '92, Springer-Verlag LNCS Vol. 740, pp. 228{244,1992.[12℄ D. Halevi, A. Shamir, \The LSD broadast enryption sheme", to appear in Pro. Crypto2002.[13℄ U. Jannsen, S. Kleiman, J-P. Serre (eds.), Motives, Pro. Sump. Pure Math., vol. 55, Amer.Math. So., 1994, part 1.[14℄ A. Joux, \A one round protool for tripartite DiÆe-Hellman", Pro. ANTS 4, Leture Notesin Computer Siene, Vol. 1838, pp. 385{394, 2000.[15℄ A. Joux, K. Nguyen, \Separating Deision DiÆe-Hellman from DiÆe-Hellman in rypto-graphi groups", available from eprint.iar.org.[16℄ A. Lysyanskaya, \Unique signatures and veri�able random funtions from DH-DDH sepa-ration", to appear in Crypto 2002.[17℄ A. Menezes, Ellipti urve publi key ryptosystems, Kluwer Aademi Publishers, Boston,MA, 1993.[18℄ A. Menezes, T. Okamoto, S. Vanstone, \Reduing ellipti urve logarithms to logarithmsin a �nite �eld", IEEE Tran. on Info. Th., Vol. 39, pp. 1639{1646, 1993.[19℄ S. Miali, M. Rabin, S. Vadhan, \Veri�able Random Funtions", in Pro. FOCS `99,pp. 120{130, 1999. 19



www.manaraa.com

[20℄ V. Miller, \Short programs for funtions on urves", unpublished manusript.[21℄ J. Milne, \Motives over �nite �elds", in [13℄, pp. 401{459.[22℄ D. Naor, M. Naor, J. Lotspieh, \Revoation and Traing Shemes for Stateless Reeivers",in Pro. Crypto 2001, Leture Notes in Computer Siene, Vol. 2139, pp. 41{62, 2001.[23℄ M. Naor, O. Reingold, \Number theoreti onstrutions for eÆient pseudo random fun-tions", in pro. 38th IEEE Symposium on Foundations of Computer Siene (FOCS), 1997.[24℄ S. Pohlig, M. Hellman, \An improved algorithm for omputing disrete logarithms overGF (p) and its ryptographi signi�ane", IEEE Transations on Information Theory, Vol.24, pp. 106{110, 1978.[25℄ K. Rubin, A. Silverberg, \Supersingular abelian varieties in ryptology", to appear in Pro.Crypto 2002.[26℄ R. Sakai, K. Ohgishi, M. Kasahara, \Cryptosystems based on pairing", SCIC 2000-C20,Okinawa, Japan, January 2000.[27℄ A. J. Sholl, \Classial motives", in [13℄, pp. 401{459.[28℄ M. Steiner, G. Tsudik, M. Waidner, \DiÆe-Hellman key distribution extended to groupommuniation", in Pro. 3rd ACM Conferene on Communiations Seurity, pp. 31{37,1996.

20


