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Appli
ations of Multilinear Forms to CryptographyDan Boneh � Ali
e Silverberg ydabo�
s.stanford.edu silver�math.ohio-state.eduAbstra
tWe study the problem of �nding eÆ
iently 
omputable non-degenerate multilinear mapsfrom Gn1 to G2, where G1 and G2 are groups of the same prime order, and where 
omputingdis
rete logarithms in G1 is hard. We present several appli
ations to 
ryptography, exploredire
tions for building su
h maps, and give some reasons to believe that �nding examples withn > 2 may be diÆ
ult.1 Introdu
tionThis paper studies some questions in linear algebra and 
ryptography. Interesting problems in
ryptography have re
ently been solved using Weil or Tate pairings on supersingular ellipti
 
urves,or more generally on supersingular abelian varieties [25℄. These appli
ations in
lude one-roundthree-party key ex
hange [14℄, identity-based en
ryption [3℄, and short digital signatures [4℄ (seealso [26℄).We show that multilinear generalizations of Weil or Tate pairings would have far-rea
hing
onsequen
es in 
ryptography. Se
tion 3 des
ribes the desired properties for a multilinear form.Se
tions 4 to 6 give several appli
ations. Su
h forms would enable se
ure broad
ast en
ryptionwith very short broad
asts and private keys, a unique signature s
heme, and one-round multi-partykey ex
hange. The main question is how to build the required multilinear maps. We now havethe means and the opportunity. But do we have the motive? In Se
tion 7 we explore the questionof whether multilinear generalizations of Weil or Tate pairings 
an 
ome from geometry, or evenjust from a \motive", in the sense of [13℄. We give eviden
e that it might not be possible to �nd
ryptographi
ally useful multilinear forms within the realm of algebrai
 geometry (i.e., 
oming froman underlying 
urve, surfa
e, or higher-dimensional variety), ex
ept for the 
ase of bilinear pairingson abelian varieties and \trivial" 
ases. This suggests that genuinely new te
hniques might bene
essary to 
onstru
t multilinear maps with the desired properties.2 Notation and De�nitionsWe �rst re
all some standard notation and de�nitions that will be used throughout the paper.1. The set of all �nite length binary strings is denoted f0; 1g�, and the set of all binary stringsof length m is denoted f0; 1gm.�Boneh thanks the Pa
kard foundation and the DARPA DC program.ySilverberg thanks PARC, the Stanford University Mathemati
s Department, and NSF (grant DMS-9988869).1
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2. When we say that A(x) is a randomized algorithm, we mean that A(x) is the random variableA(x;R), where R is a uniform random variable in f0; 1gm, and where A(x; r) is a fun
tionwith inputs x and r 2 f0; 1gm.3. The probability of an event D is denoted Pr[D℄. For a �nite set S we use x S to de�ne arandom variable x that pi
ks an element of S uniformly at random (that is, for all 
 2 S wehave Pr[x = 
℄ = 1=jSj). For a randomized algorithm A we use x A(y) to de�ne a randomvariable x that is the output of algorithm A on input y. In other words, for all 
 2 f0; 1g�we have Pr[x = 
℄ = Pr[A(y; r) = 
℄. We let Pr[b(x) : x A(y)℄ denote the probability thatb(x) is true where x is the random variable de�ned by x A(y).4. We say that a fun
tion � : Z+ ! R+ is negligible if for all d > 0 and suÆ
iently large n wehave 0 < �(n) < 1=nd. For example, �(n) = 1=2n is a negligible fun
tion.5. A fun
tion f(n) : Z+! R+ is super-polynomial if for all 
 > 0 and all suÆ
iently large n wehave f(n) � n
. A fun
tion f(n) : Z+! R+ is super-linear if for all 
 > 0 and all suÆ
ientlylarge n we have f(n) � 
n.Next, we give a de�nition of an n-multilinear map. We view the groups G1 and G2 as multi-pli
ative groups.De�nition 2.1. Let G1; G2 be two groups of the same prime order. We say that a map e : Gn1 ! G2is an n-multilinear map if it satis�es the following two properties:1. if a1; : : : ; an 2 Z and x1; : : : ; xn 2 G1 thene(xa11 ; : : : ; xann ) = e(x1; : : : ; xn)a1���an :2. The map e is non-degenerate in the following sense: if g 2 G1 is a generator of G1 thene(g; :::; g) is a generator of G2.Let G1; G2 be �nite 
y
li
 groups of order ` and let g be a generator of G1. Re
all that thedis
rete log fun
tion in G1 is de�ned as Dlogg(g�) = �, where � 2 Z and 1 � � � `. The dis
retelog problem in G1 is to 
ompute the dis
rete log fun
tion in G1. We are mostly interested ingroups where this problem is intra
table. It is well known [24℄ that 
omputing dis
rete log in G1 isredu
ible to 
omputing dis
rete log in all prime order subgroups of G1. Therefore, we 
an and willrestri
t our attention to groups G1; G2 of prime order `.We note that an eÆ
iently 
omputable n-multilinear map e : Gn1 ! G2 
an be used to redu
ethe dis
rete log problem in G1 to the dis
rete log problem in G2. Hen
e, if dis
rete log in G1 is hardthen dis
rete log in G2 must also be hard. This redu
tion is a straightforward generalization of theMOV redu
tion [18℄. Let g; h 2 G1 su
h that h = g�. Computing � given g and h is a dis
rete logproblem in G1. To redu
e this to a dis
rete log problem in G2 
ompute the following two values:x = e(g; g; : : : ; g) and y = e(h; g; g; : : : ; g):Then by n-multilinearity we have that y = x� as elements in G2. Hen
e, if the dis
rete log problemin G1 is hard then dis
rete log in G2 must also be hard. The 
onverse is not known to be true.Next, our goal is to de�ne a 
ryptographi
 n-multilinear map generator. Roughly speaking, a
ryptographi
 n-multilinear map e : Gn1 ! G2 is an n-multilinear map su
h that (1) the groupa
tion in G1 and G2 is eÆ
iently 
omputable, (2) the map e is eÆ
iently 
omputable, and (3) thereis no eÆ
ient algorithm to 
ompute dis
rete log in G1.2
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We will �rst de�ne a multilinear map generator. Sin
e we are studying 
omputational problemson the groups G1 and G2 we 
annot treat these groups as abstra
t algebrai
 obje
ts. Instead, wehave to �x an expli
it representation of group elements and have to ensure that all group operationsand n-multilinear maps are 
omputable by e�e
tive algorithms. Throughout the paper we representgroup elements as binary strings.De�nition 2.2. A multilinear map des
ription � 2 f0; 1g� is a des
ription of two groups G1 andG2 of the same prime order, an n-multilinear map e : Gn1 ! G2 for some n, and fun
tions prodb,inverseb, map, and testb, for b = 1; 2, satisfying:� If b = 1; 2 and x; y 2 Gb, then prodb(�; x; y) = xy and inverseb(�; x) = x�1.� If x1; : : : ; xn 2 G1, then map(�; x1; : : : ; xn) = e(x1; : : : ; xn).� If b = 1; 2 and x 2 f0; 1g�, then testb(�; x) = yes if and only if x 2 Gb.For example, a multilinear map des
ription � might in
lude a prime power q, 
oeÆ
ients forequations that de�ne an abelian variety (or ellipti
 
urve) A de�ned over Fq , and the 
oordinatesof a point P 2 A(Fq ) of prime order `. The group G1 would be the group generated by P , and G2would be the group of `-th roots of unity in F�qd , where d is the order of q (mod `). With n = 2the map e : G21 ! G2 
ould be a modi�ed Weil pairing (as in x7 below).De�nition 2.3. A multilinear map generator G = G(t; n) is a randomized algorithm that runsin polynomial time in (positive integer) inputs t and n, and outputs a tuple (�; g; `). Here � is amultilinear map des
ription su
h that the fun
tions prodb, inverseb, map, and testb run in polynomialtime in t and n, ` is the order of the groups G1 and G2 de�ned by �, and g is some generator ofG1.The point of the se
urity parameter t in De�nition 2.3 will be
ome apparent when we de�ne
ryptographi
 multilinear map generators below. This parameter will determine the size of thegroups G1 and G2. The size of G1 as a fun
tion of t must be large enough so that no polynomialtime algorithm in t 
an 
ompute dis
rete log in G1.Let G be a multilinear map generator. De�ne a randomized algorithm A's advantage in 
omput-ing dis
rete log to be the probability that A is able to 
ompute dis
rete log in the group G1 = hgide�ned by G(t; n). In other words,AdvDlogG;A;n(t) = Pr [A (�; g; gr) = r : (�; g; `) G(t; n); r  Z=`Z℄ :De�nition 2.4. A multilinear map generator G is a 
ryptographi
 multilinear map generator if forall polynomial time algorithms A (polynomial in t) and all n > 1, the fun
tion AdvDlogG;A;n(t) isnegligible.3 Multilinear Maps: Problem StatementOpen problem. The 
entral open problem posed in this paper is the 
onstru
tion of 
rypto-graphi
 multilinear map generators when n > 2.For n = 2, (modi�ed) Weil and Tate pairings on ellipti
 
urves are believed to give 
ryptographi
bilinear map generators. The 
onstru
tions in this paper typi
ally need n on the order of 103.3
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3.1 Complexity assumptionsFor some of the appli
ations we present, the intra
tability of dis
rete log is not suÆ
ient to provese
urity. We will need to make slightly stronger assumptions. We list these assumptions here. Thereader may wish to skip this se
tion for now and refer ba
k to it as needed in the later se
tions.For the remainder of this se
tion, �x a multilinear map generator G.The multilinear DiÆe-Hellman assumption. The multilinear DiÆe-Hellman assumptionsays that given g; ga1 ; : : : ; gan+1 inG1, it is hard to 
ompute e(g; : : : ; g)a1 ���an+1 inG2. More pre
isely,de�ne a randomized algorithm A's advantage in solving the multilinear DiÆe-Hellman problem tobe the probability that A is able to 
ompute e(g; : : : ; g)a1 ���an+1 from g; ga1 ; : : : ; gan+1 , i.e.,AdvDHmG;A;n(t) =Pr"A(�; g; ga1 ; : : : ; gan+1) = e(g; : : : ; g)a1���an+1 : (�; g; `) G(t; n);(a1; : : : ; an+1) (Z=`Z)n+1 # :De�nition 3.1. We say the multilinear map generator G satis�es the multilinear DiÆe-Hellmanassumption if for all polynomial time algorithms A (polynomial in t) and all n > 1, the fun
tionAdvDHmG;A;n(t) is negligible.The DiÆe-Hellman inversion assumption. The idea of the assumption is that given g; gb 2G1 it should be hard to 
ompute e(g; : : : ; g)1=b 2 G2. De�ne a randomized algorithm A's advantagein solving the DiÆe-Hellman inversion problem to be the probability that A is able to 
omputee(g; : : : ; g)1=b from g; gb, i.e.,AdvDHinvG;A;n(t) = Pr hA(�; g; gb) = e(g; g; : : : ; g)1=b : (�; g; `) G(t; n); b (Z=`Z)n+1i :De�nition 3.2. The multilinear map generator G satis�es the DiÆe-Hellman inversion assumptionif for all polynomial time algorithmsA (polynomial in t) and all n > 1, the fun
tion AdvDHinvG;A;n(t)is negligible.The generalized DiÆe-Hellman assumption. The assumption says that given ga1 ; : : : ; ganin G1 and given all the subset produ
ts gQi2S ai 2 G1 for any stri
t subset S � f1; : : : ; ng, it ishard to 
ompute ga1 ���an 2 G1. Sin
e the number of subset produ
ts is exponential in n we providea

ess to all these subset produ
ts through an ora
le (an ora
le is a fun
tion that 
an be evaluatedin unit time). Let (�; g; `) be an output of G(t; n). For a ve
tor ~a = (a1; : : : ; an) 2 (Z=`Z)n, de�neO�;g;~a to be an ora
le that for any stri
t subset S � f1; : : : ; ng responds with:O�;g;~a(S) = gQi2S ai 2 G1:De�ne a randomized algorithm A's advantage in solving the generalized DiÆe-Hellman problem tobe the probability that A is able to 
ompute ga1���an given a

ess to the ora
le O�;g;~a(S). In otherwords, AdvDHgenG;A;n(t) = Pr"AO�;g;~a(�; g) = ga1���an : (�; g; `) G(t; n);~a = (a1; : : : ; an) (Z=`Z)n # :Note that the ora
le only answers queries for stri
t subsets of f1; : : : ; ng.De�nition 3.3. We say G satis�es the generalized DiÆe-Hellman assumption if for all polynomialtime algorithms A (polynomial in t) and all n > 1, the fun
tion AdvDHgenG;A;n(t) is negligible.4
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4 One-Round n-way DiÆe-Hellman Key Ex
hangeWe give several appli
ations of n-multilinear maps to 
ryptography. We start with a simple appli-
ation: 
onstru
ting a one-round n-way DiÆe-Hellman key ex
hange proto
ol. Joux [14℄ showedhow Weil and Tate pairings 
an be used for a one-round 3-way se
ret key ex
hange. Using ann-multilinear map, Joux's proto
ol generalizes naturally to a one-round (n + 1)-way se
ret keyex
hange.Consider n + 1 parties who wish to set up a 
onferen
e key using a one-round proto
ol. The\one-round" refers to the fa
t that ea
h party is only allowed to broad
ast one value to all otherparties. All n + 1 broad
asts o

ur simultaneously. On
e all n + 1 parties broad
ast their valuesea
h party should be able to lo
ally 
ompute a global shared se
ret S. The se
ret S will then beused to derive a 
onferen
e key. An eavesdropper, seeing only the publi
 broad
ast values, shouldnot be able to 
ompute the global se
ret S. This is a dire
t generalization of the DiÆe-Hellmanproto
ol to n+1 parties (DiÆe-Hellman is designed for two parties). Solutions to this problem areuseful in redu
ing the number of round trips in group key management proto
ols [28℄. This is along-standing open problem.More pre
isely, a one-round n-way 
onferen
e key ex
hange s
heme 
onsists of the followingthree randomized polynomial time algorithms:Setup(t; n): Takes a se
urity parameter t 2 Z+ and the number of parti
ipants n. Itruns in polynomial time in t; n and outputs publi
 parameters �dh 2 f0; 1g�.Publish(�dh; i): Party i 2 f1; : : : ; ng runs algorithm Publish(�dh; i). The algorithm out-puts a pair (pubi;privi), with both in f0; 1g�. Party i broad
asts pubi to all otherparties, and keeps privi se
ret.KeyGen(�dh; j;privj; fpubigi6=j): Party j 2 f1; : : : ; ng 
olle
ts the publi
 broad
astssent by all other parties. It then runs algorithm KeyGen giving it all these publi
values and its se
ret value privj . Algorithm KeyGen outputs a 
onferen
e key S.The 
onsisten
y requirement is that for all j = 1; : : : ; n, algorithm KeyGen produ
es the same
onferen
e key S. In other words, all n parties generate the same se
ret 
onferen
e key. The s
hemeis se
ure if no polynomial time algorithm, given all n publi
 values (pub1; : : : ;pubn), will produ
ethe se
ret 
onferen
e key S with non-negligible probability.De�nition 4.1. A one-round n-way 
onferen
e key ex
hange s
heme fSetup;Publish;KeyGeng isse
ure if for all polynomial time randomized algorithms A the following probability:AdvDHA;n(t) = Pr24A(�dh; pub1; : : : ;pubn) = S : �dh  Setup(t; n);(pubi;privi) Publish(�; i);S  KeyGen(�; 1;priv1; fpubigi6=1) 35is a negligible fun
tion in t.We present a one-round (n+1)-way key ex
hange proto
ol from an n-multilinear map generator G.Setup(t; n+ 1): Run algorithm G(t; n) to get (�; g; `). Let e : Gn1 ! G2 be the n-multilinear map de�ned by �. Then g is a generator of G1 and ` is the order ofG1. Output �dh = (�; g; `) as the publi
 parameters.Publish(�dh; i): Pi
k a random integer ai 2 [1; `� 1℄. Compute hi = gai 2 G1.Output (pubi;privi) where pubi = hi and privi = ai.Party i broad
asts hi to all other parti
ipants and keeps ai se
ret.5
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KeyGen(�dh; j;privj; fpubigi6=j): Let privj = aj and pubi = hi.Party j 
omputes the 
onferen
e key S as follows:S = e(h1; : : : ; hj�1; hj+1; : : : ; hn+1)aj 2 G2:This S is the output of algorithm KeyGen on input (�dh; j;privj ; fpubigi6=j).Note that S = e(g; g; : : : ; g)a1a2���an+1 . Hen
e, all n+ 1 parties will obtain the same 
onferen
e keyS. The following result is immediate from De�nition 3.1.Proposition 4.2. Let G be a multilinear map generator. If G satis�es the multilinear DiÆe-Hellman assumption then the proto
ol above is a se
ure one-round (n + 1)-way 
onferen
e keyex
hange s
heme for every n > 1.We note that to use the global se
ret S as a key for a symmetri
 
ipher one would have toprove that S 
an be 
onverted into a binary string of a 
ertain length that is indistinguishablefrom a random string of the same length. This would require a stronger 
omplexity assumptionthan the multilinear DiÆe-Hellman assumption. Alternatively, one 
ould use hard-
ore bits of eto generate the global se
ret one bit at a time, but this would require many invo
ations of thekey ex
hange proto
ol above. This issue is analogous to the issue that 
omes up when using thestandard DiÆe-Hellman se
ret as a se
ret en
ryption key [2℄.5 Unique Signatures and Proofs for the n-way DiÆe-Hellman Re-lationOur next appli
ation is useful for building unique signatures and veri�able pseudo random fun
tions(VRF's) [19℄. Let G1 be a group of prime order ` with a generator g.De�nition 5.1. We say that (g; g1; : : : ; gn; h) 2 Gn+21 is an n-way DiÆe-Hellman tuple if g gener-ates G1 and there exist integers a1; : : : ; an 2 [1; ` � 1℄ su
h that gi = gai and h = ga1���an .Suppose there is no eÆ
ient algorithm for the dis
rete log problem inG1. We study the followingproblem: is there an eÆ
ient algorithm A that takes an arbitrary tuple I = (g; g1; : : : ; gn; h) 2 Gn+21as input and returns yes if and only if I is an n-way DiÆe-Hellman tuple? We 
all this the n-way de
ision DiÆe-Hellman problem. For n = 2 one obtains the standard De
ision DiÆe-Hellmanproblem [2℄.Re
ently Joux and Nguyen [15℄ showed that the group of points on a supersingular ellipti

urve over a �nite �eld is an example of a group where dis
rete log is (presumably) hard, but thestandard (2-way) De
ision DiÆe-Hellman problem is easy. A generalization of their idea using ann-multilinear map would solve the n-way de
ision DiÆe-Hellman problem.Algorithm 5.2. Suppose e : Gn1 ! G2 is an n-multilinear map. Let g be a generator of G1 andlet I = (g; g1; : : : ; gn; h). We test if I is an n-way DiÆe-Hellman tuple as follows:1. Compute A = e(g1; : : : ; gn) 2 G2.2. Compute B = e(h; g; g; : : : ; g) 2 G2.3. Test if A = B. If so, output yes. If not, output no.The following simple result shows that the algorithm's output is always 
orre
t.6
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Proposition 5.3. Suppose that e : Gn1 ! G2 is an n-multilinear map, and I = (g; g1; : : : ; gn; h) 2Gn+21 , where g is a generator of G1. Algorithm 5.2 outputs yes given I as input if and only if I isan n-way DiÆe-Hellman tuple.Proof. Write gi = gai and h = gb. Thene(g1; : : : ; gn) = e(ga1 ; : : : ; gan) = e(g; : : : ; g)a1 ���an ;e(h; g; g; : : : ; g) = e(gb; g; g; : : : ; g) = e(g; g; : : : ; g)b:The non-degenera
y of e implies that e(g; g; : : : ; g) is a generator of G2. It now follows thate(g1; : : : ; gn) = e(h; g; g; : : : ; g) if and only if b � a1 � � � an (mod `).We have just shown that a 
ryptographi
 n-multilinear map generator would give rise to groupswhere dis
rete log is hard, but the n-way de
ision DiÆe-Hellman problem is easy.5.1 Unique Signatures and Veri�able Pseudo Random Fun
tionsUsing Algorithm 5.2 we give a simple 
onstru
tion for a unique signature s
heme and Veri�ablePseudo Random Fun
tions. We �rst re
all the de�nition of unique signatures [11℄. Intuitively, aunique signature s
heme is a digital signature s
heme where every message has a unique digitalsignature (in most se
ure signature s
hemes there are many valid signatures for a given message).Unique signature s
hemes were known to exist in the 
ommon random string model [11℄ and inthe random ora
le model [1℄, but until the results of Mi
ali et al. [19℄ there were no 
onstru
tionsfor su
h s
hemes in the standard model de�ned below. Unique signatures are used to 
onstru
tVeri�able Pseudo Random Fun
tions, whi
h are a useful tool in 
ryptographi
 proto
ol design [19℄.De�nition 5.4. An n-bit unique signature s
heme (whi
h is used to sign n-bit messages) 
onsistsof three algorithms KeyGen;Sign;Verify de�ned as follows:KeyGen(t): A randomized algorithm that outputs a signing key SK and a veri�
ation key VK.Sign(M;SK): A deterministi
 algorithm that takes as input a message M 2 f0; 1gn and a signingkey SK and outputs a signature S.Verify(M;S;VK) : A deterministi
 algorithm that takes as input a messageM 2 f0; 1gn, a signatureS, and a veri�
ation key VK and outputs yes or no.These algorithms must satisfy the following requirements:Consisten
y For every key pair (VK;SK) produ
ed by the KeyGen algorithm and every messageM 2 f0; 1gn we have that Verify(M;Sign(M;SK);VK) = yes:Uniqueness For every key pair (VK;SK) produ
ed by the KeyGen algorithm, every messageM 2 f0; 1gn, and every S1 and S2, we have thatVerify(M;S1;VK) = Verify(M;S2;VK) = yes ) S1 = S2:Se
urity for a unique signature s
heme is de�ned as for standard signatures and is 
alled se
urityagainst existential forgery under an adaptive 
hosen message atta
k [10℄. This notion is de�ned bythe following game between a 
hallenger and an atta
ker A:7
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Step 1. The 
hallenger runs algorithm KeyGen(t) to generate a key pair (VK;SK). Itgives VK to the atta
ker and keeps SK to itself.Step 2. The atta
ker A issues �nitely many queries M1;M2; : : : 2 f0; 1gn and re
eivesthe signatures S1; S2; : : : on these queries. These queries 
an be issued adaptively,namely, the atta
ker 
an 
hoose query Mi after seeing the signatures S1; : : : ; Si�1.Step 3. Finally, the atta
ker A outputs a message signature pair (M;S) where M 62fM1;M2; : : :g.The atta
ker A wins the game if Verify(M;S;VK) = yes. Let AdvSigSig;A(t) denote theprobability that A wins the game.De�nition 5.5. We say that an n-bit unique signature s
heme Sig is se
ure against existentialforgery under an adaptive 
hosen message atta
k if for all polynomial time atta
k algorithms A(polynomial in t) the fun
tion AdvSigSig;A(t) is negligible.We give a simple 
onstru
tion for unique signatures. The 
onstru
tion is similar to a PseudoRandom Fun
tion (PRF) based on the De
ision DiÆe-Hellman problem (DDH) due to Naor andReingold [23℄. Our 
onstru
tion is based on a re
ent result due to Lysyanskaya [16℄.Let G be a multilinear map generator. The following unique signature s
heme is used to signn-bit messages:KeyGen(t): 1. Run algorithm G(t; n) to generate (�; g; `).2. Pi
k random a1;0; a1;1; : : : ; an;0; an;1 2 f1; : : : ; `� 1g.3. Set the signing key SK = (�; a1;0; a1;1; : : : ; an;0; an;1), andthe veri�
ation key VK = (�; g; ga1;0 ; : : : ; gan;1 ).Sign(M;SK): Let M = m1 : : : mn 2 f0; 1gn. Output:S = ga1;m1 �a2;m2 ���an;mn 2 G1:Verify(M;S;VK): Write VK = (�; g; g1;0; : : : ; gn;1). Test if I = (g; g1;m1 ; : : : ; gn;mn ; S)is an n-way DiÆe-Hellman tuple using Algorithm 5.2. Output yes if I is an n-wayDiÆe-Hellman tuple and output no otherwise.For a given M and VK there is only one S 2 G1 for whi
h (g; g1;m1 ; : : : ; gn;mn ; S) is an n-wayDiÆe-Hellman tuple. Hen
e, the s
heme is a unique signature s
heme. Note that there is somenegligible probability that two di�erent messages have the same signature.Next, we argue that the s
heme is a se
ure unique signature s
heme. Se
urity is based on thegeneralized DiÆe-Hellman assumption (De�nition 3.3).Theorem 5.6. Suppose the multilinear map generator G satis�es the generalized DiÆe-Hellmanassumption. Then for all �xed n 2 Z+, the n-bit unique signature s
heme above is se
ure againstexistential forgery under an adaptive 
hosen 
iphertext atta
k. Con
retely, an atta
k algorithm Awith advantage AdvSigSig;A(t) in forging signatures gives rise to an algorithm B for the generalizedDiÆe-Hellman problem in G with advantageAdvDHgenG;B;n(t) � AdvSigSig;A(t)=2n:Proof. The proof is essentially identi
al to the proof of se
urity given by Lysyanskaya [16℄.8
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Con
rete parameters. Signature s
hemes in pra
ti
e are mostly used to sign short messagesthat are the output of a 
ollision resistant hash fun
tion su
h as SHA-1. Using the terminologyabove, to sign a message M of arbitrary length we 
ompute S = Sign(H(M);SK) where H is some
ollision resistant hash. Therefore, by Theorem 5.6, if H outputs n-bit strings then we need ann-multilinear map generator G for whi
h 2nAdvDHgenG;B;n(t) is negligible. In pra
ti
e we often usen = 160 sin
e the output of SHA-1 is 160-bit strings. Thus to give 
on
rete parameters, we needa map e : G1601 ! G2 where the generalized DiÆe-Hellman problem 
annot be solved in time 280with advantage greater than 1=2240 (this will ensure that no 280-time algorithm 
an existentiallyforge signatures with probability greater than 1=280). Sin
e the DiÆe-Hellman problem 
annot(
urrently) be solved in time 280 with advantage greater than 1=2240 for the group generated bya point of suÆ
iently large order on a supersingular ellipti
 
urve over a (suÆ
iently large) �nite�eld, Weil pairings yield bilinear maps with the desired se
urity parameters. We hope that a 160-multilinear map with the same se
urity parameters for the generalized DiÆe-Hellman problem 
analso be built. We note that, as in [16℄, the redu
tion in Theorem 5.6 
an be made more eÆ
ient byrestri
ting the message spa
e to 
odewords in a 
ertain error 
orre
ting 
ode.Signature length. Note that a signature in the s
heme above 
onsists of a single group elementin G1. This means that this signature s
heme 
an potentially produ
e signatures that are as shortas BLS signatures [4℄. BLS signatures are existentially unforgeable in the random ora
le model,whereas the advantage of the signature s
heme above is that it is existentially unforgeable in thestandard se
urity model (no random ora
les are needed).To 
on
lude the se
tion we note that Mi
ali et al. [19℄ show that unique signatures give riseto Veri�able Pseudo Random Fun
tions (VRF). Hen
e, the 
onstru
tion using n-multilinear mapsalso gives a simple 
onstru
tion for VRF's.6 Broad
ast En
ryption with Short Keys and TransmissionsBroad
ast en
ryption [8℄ appears to be the most interesting appli
ation to date for n-multilinearmaps. We begin by des
ribing the broad
ast en
ryption problem, survey some of the existing work,and then des
ribe a solution using n-multilinear maps.6.1 The broad
ast en
ryption problemBroad
ast en
ryption involves one broad
aster and n re
eivers. Ea
h re
eiver is given a uniqueprivate key. The broad
aster is given a broad
aster key. The broad
aster wishes to broad
astmessages to a spe
i�
 subset S � f1; : : : ; ng of re
eivers (say, those re
eivers that previously paidto re
eive the broad
ast). Any re
eiver in S should be able to use its private key to de
rypt thebroad
ast. However, even if all re
eivers outside of S 
ollude they should not be able to de
ryptthe broad
ast. More pre
isely, a broad
ast en
ryption s
heme is made up of three randomizedpolynomial time (in t and n) algorithms:Setup(t; n): Takes as input a se
urity parameter t 2 Z+ and the number of re
eivers n. It outputsn private keys d1; : : : ; dn and a sender key T .En
rypt(S; T ): Takes as input a subset S � f1; : : : ; ng, and sender key T . It outputs a pair (Hdr;K)where Hdr is 
alled the header and K is a message en
ryption key. Let CM be the en
ryptionof the message body M under the symmetri
 key K. The broad
ast to users 
onsists of9
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(S;Hdr; CM ). The pair (S;Hdr) is often 
alled the full header and CM is often 
alled thebroad
ast body.De
rypt(S; di;Hdr): Takes as input a subset S � f1; : : : ; ng, a re
eiver key di, and a header Hdr.If i 2 S, then the algorithm outputs the message en
ryption key K. The key K 
an then beused to de
rypt CM and obtain the message body M .To state a (simple) se
urity requirement we de�ne the following game between an atta
k algo-rithm A and a 
hallenger.Step 1. The 
hallenger takes (t; n) as input. It runs Setup(t; n) to generate a senderkey T and n private keys d1; : : : ; dn.Step 2. Algorithm A outputs a set S � f1; : : : ; ng of re
eivers where it wants to mountan atta
k. The 
hallenger gives A all private keys dj for whi
h j 62 S.Step 3. The 
hallenger runs the En
rypt algorithm to obtain (Hdr;K) = En
rypt(S; T ).It gives Hdr to algorithm A.Step 4. Algorithm A outputs a key K 0 and wins the game if K = K 0.Let AdvBrA;n(t) denote the probability that A wins the game when the 
hallenger isgiven (t; n) as input.Observe that this game models an atta
k where all users not in the set S 
ollude to try andexpose a broad
ast intended for users in S only. The set S is 
hosen adversarially.De�nition 6.1. We say that the broad
ast en
ryption s
heme is se
ure if for all polynomial timeatta
k algorithms A and for all n > 1 the fun
tion AdvBrA;n(t) is negligible.Note that in the atta
k game above the adversary is non-adaptive | it requests the entire setof keys S at on
e. An adaptive adversary 
ould request user keys adaptively. That is, it wouldde
ide to request the private key for user ir after seeing the private keys for users i1; i2; : : : ; ir�1.Here we only 
onsider non-adaptive adversaries.The question is how to build broad
ast en
ryption s
hemes where both the header size andprivate key size are small as a fun
tion of the number n of re
eivers. One trivial 
onstru
tion givesa se
ure broad
ast en
ryption s
heme where the size of the private keys di is independent of n,but unfortunately the header size is linear in n. Another trivial 
onstru
tion gives a broad
asten
ryption s
heme where the size of the header Hdr is independent of n, but the size of ea
hprivate key di is exponential in n. These are two extremes of the spe
trum. Re
ently Naor-Naor-Lotspie
h [22℄ gave an elegant 
onstru
tion where ea
h private key 
onsists of O((log n)2) en
ryptionkeys for a symmetri
 en
ryption s
heme. The header 
onsists of O(n�jSj) en
ryptions of a messagekey using the symmetri
 en
ryption s
heme. When the size of the symmetri
 en
ryption key is k-bitsthe system has the following parameters:private-key-size = O(k(log n)2) ; header-size = O(k(n� jSj)):Halevi and Shamir [12℄ showed that the private key size 
an be redu
ed to approximately O(k log n).This broad
ast system is designed to broad
ast to large sets S, i.e., when the size of S is 
lose to n,so that n� jSj is small. The value of k depends on the se
urity parameter t. We must ensure thata polynomial time algorithm (in t) 
annot s
an through the entire set of symmetri
 keys, a set ofsize 2k. Therefore, for simpli
ity we say that k must be at least 
(log t)2 for some 
onstant 
 > 0.10
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In fa
t, any super-linear fun
tion in log t will do. For 
onsisten
y with the notation in this paperwe say that the s
heme, with the improvement of Halevi-Shamir, has the following parameters:private-key-size = O �(log t)2 log n� ; header-size = O �(log t)2(n� jSj)� :A 
entral open problem in this area is whether one 
an build a se
ure broad
ast en
ryptions
heme where both the size of the header and the size of ea
h private key di depend at mostlogarithmi
ally on n. We note that Fiat-Naor [8℄ and Chi
k-Tavaras [6℄ gave 
onstru
tions basedon RSA that meet this requirements. However, these 
onstru
tions either do not resist 
ollusion ofusers [8℄ outside the set S, or the 
onstru
tion 
an only handle a small number [6℄ of re
eiver setsS.6.2 An eÆ
ient solution using n-multilinear mapsUsing n-multilinear maps it is possible to give an eÆ
ient solution to the broad
ast en
ryptionproblem (eÆ
ient in terms of private key size and header size). We 
onstru
t a se
ure broad
asts
heme with the following parameters:private-key-size = O((log t)2) ; header-size = 0:In fa
t, (log t)2 
an be repla
ed by any super-linear fun
tion in log t.Let G be a multilinear map generator and let n be the intended number of re
eivers. Let (�; g; `)be an output of G(t; n). The order of G1 must be suÆ
iently large to make dis
rete log diÆ
ult.We assume elements in G1 are represented as binary strings of length O((log t)2). Sin
e we alwaysassume t > n, the important point here is that the length of elements in G1 depends at mostlogarithmi
ally on n.We will also �x a fun
tion Fm;� : f0; 1gm ! Gn1 . We 
all f0; 1gm the seed spa
e. We will needm = m(t) to be a fun
tion of the se
urity parameter t. The fun
tion m(t) will be determined later.For a given seed a 2 f0; 1gm, a given set S � f1; : : : ; ng, and a given g 2 G1 we de�ne anauxiliary fun
tion �S;a;g : f1; : : : ; ng ! G1 as follows:�S;a;g(i) = � gi if i 2 Sg otherwisewhere Fm;�(a) = (g1; : : : ; gn). We des
ribe the new broad
ast en
ryption s
heme by des
ribing thethree algorithms Setup, En
rypt, and De
rypt.Setup(t; n): Run algorithm G(t; n) to generate (�; g; `).Pi
k a random � 2 [1; `� 1℄.Pi
k a random a 2 f0; 1gm and write Fm;�(a) = (g1; : : : ; gn) 2 Gn1 .The sender key is T = (�; g; a; �).The i-th re
eiver key is di = (i;�; g; a; ui) where ui = g�i .En
rypt(S; T ): To transmit to a set S do:Step 1. Compute KS = e��S;a;g(1); : : : ;�S;a;g(n)�� 2 G2.Step 2. Output KS as the message en
ryption key. The header Hdr is the empty string "(in other words, the size of the header is zero).11
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De
rypt(S; di; "): To obtain the message en
ryption key KS using di, 
ompute:KS = e��S;a;g(1); : : : ;�S;a;g(i� 1); ui; �S;a;g(i+ 1); : : : ;�S;a;g(n)�:The se
urity of the system relies on the DiÆe-Hellman inversion assumption (De�nition 3.2).We show that an atta
k on the broad
ast en
ryption s
heme leads to an algorithm that 
an solvethe DiÆe-Hellman inversion problem for G. Unfortunately, the proof requires that the fun
tionFm;� : f0; 1gm ! Gn1 be modeled as a random ora
le (see [1℄ for the de�nition; essentially, arandom ora
le implements a fun
tion 
hosen uniformly at random from the set of all fun
tionsfrom the domain to the range).Theorem 6.2. Suppose the multilinear map generator G satis�es the DiÆe-Hellman inversionassumption. Furthermore, suppose the fun
tion Fm;� : f0; 1gm ! Gn1 is a random ora
le. Then thebroad
ast en
ryption s
heme above is se
ure as long as m = m(t) is a super-linear fun
tion in log t(e.g., m(t) = (log t)2).Proof. Suppose there is a polynomial time atta
ker A that wins the broad
ast en
ryption gamewith non-negligible probability, i.e., �(t) = AdvBrA;n(t) > 1=t
 for some 
 > 0. Let T (t) be therunning time of algorithm A. We know that T (t) < td for some d > 0. We build an algorithm Bfor solving the DiÆe-Hellman inversion problem whereAdvDHinvG;B;n(t) > �(t)� T (t)2m(t) � T (t) :Sin
e m(t) is a super-linear fun
tion in log t we know that 2m(t) is super-polynomial and thereforeT (t)2m(t)�T (t) is a negligible fun
tion. It follows that AdvDHinvG;B;n(t) is non-negligible, and hen
e Bwill violate the DiÆe-Hellman inversion assumption for G.We des
ribe algorithm B. Let (�; g; `)  G(t; n). As usual, � de�nes an n-multilinear mape : Gn1 ! G2. Algorithm B is given � and g; h 2 G1. Write h = gb where b 2 [1; ` � 1℄. AlgorithmB's goal is to 
onstru
t e(g; g; : : : ; g)1=b, the b-th root of e(g; g; : : : ; g) in G2.Algorithm B(�; g; h) works by running A as follows:Fm;�-queries. At any time algorithm A may query the ora
le for the fun
tion Fm;�. To answerthese queries B maintains an F -list 
onsisting of tuples (a; (g1; : : : ; gn)). Initially the F -listis empty. When A issues a query for Fm;�(a) with a 2 f0; 1gm, algorithm B 
he
ks whethera appears as the �rst entry of some tuple (a; (g1; : : : ; gn)) on the F -list. If so, B replies withFm;�(a) = (g1; : : : ; gn). Otherwise, B pi
ks a random tuple (g1; : : : ; gn) 2 Gn1 , appends thetuple (a; (g1; : : : ; gn)) to the F -list, and responds to A with Fm;�(a) = (g1; : : : ; gn).Step 1. At the beginning of the atta
k game, algorithm A outputs a subset of users S � f1; : : : ; ng.Algorithm B needs to respond with all private keys for users i 62 S. It does so as follows:1. Pi
k a random a 2 f0; 1gm. If a already appears as the �rst entry of some tuple on theF -list, algorithm B outputs fail and terminates the simulation. The algorithm failed.2. Otherwise, algorithm B pi
ks random r1; : : : ; rn 2 f1; : : : ; `g. For i 2 S set gi = gri .For i 62 S set gi = hri . Let (g1; : : : ; gn) be the resulting tuple. We de�ne Fm;�(a) =(g1; : : : ; gn) and append the tuple (a; (g1; : : : ; gn)) to the F -list.12
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3. At this point we know that Fm;�(a) = (g1; : : : ; gn). For i 62 S de�ne di = (i;�; g; a; ui)where ui = gri . Note that for all i 62 S we have ui = g1=bi . This means that the setof private keys fdigi62S is valid and 
onsistent. The (unknown) se
ret � that wouldnormally be used to generate these keys is de�ned to be � = b�1 mod `.4. For all i 62 S give di to algorithm A.Step 2. We know that algorithm A will respond with the key for the set S, namely:KS = e��S;a;g(1); : : : ;�S;a;g(n)�� = e��S;a;g(1); : : : ;�S;a;g(n)� 1bwith probability at least �(t). By de�nition we haveKS = e(g; g; : : : ; g)b�1Qi2S ri :Step 3. Set 
 = �Qi2S ri��1 (mod `). Then K
S = e(g; g; : : : ; g)1=b. Hen
e, by 
omputing K
S ,algorithm B obtains the value it was asked to 
ompute.Algorithm B will produ
e the 
orre
t answer if (1) it does not abort in Step 1, and (2) it re
eivesthe 
orre
t answer from algorithm A in Step 2. By de�nition of algorithm A we know that event(2) happens with probability at least �(t). To bound the probability for event (1) �rst observe thatA makes at most T (t) queries to the fun
tion Fm;� prior to Step 1. Algorithm B will abort inStep 1 if it pi
ks a random a 2 f0; 1gm that happens to equal one of A's queries. The probabilitythat A's i-th query is equal to a given that the �rst i� 1 queries are distin
t and not equal to a isat most 12m�i . Hen
e, whenever T (t) < 2m, the probability that B aborts in Step 1 is at most12m + 12m � 1 + : : :+ 12m � T (t) + 1 < T (t)2m � T (t) :Hen
e, AdvDHinvG;B;n(t) = Pr[(1) and (2)℄ � Pr[(2)℄ � Pr[:(1)℄ � �(t)� T (t)2m � T (t)as required.Summary of the parameters. Suppose G satis�es the DiÆe-Hellman inversion assumption.Then by Theorem 6.2, to get a se
ure broad
ast en
ryption s
heme we 
an take m = (log t)2. Theprivate key 
onsists of an m-bit string and two group elements in G1. By assumption, the twogroup elements are also of length O(m). Hen
e, we get the following parameters for our s
heme:private-key-size = O((log t)2) ; header-size = 0:The full header in the s
heme 
ontains only the des
ription of the set S. Sin
e we always assumethat t > n we get that the size of the private key depends logarithmi
ally on the number of re
eiversn. Hen
e, multilinear maps give a broad
ast en
ryption s
heme with optimal size broad
ast andvery short private keys. On the down side, en
ryption and de
ryption take time proportional to n.
13
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7 Constru
tions and Restri
tionsWhere does one look for n-multilinear forms with the desired properties?For n = 2, the answer is Weil and Tate pairings asso
iated to abelian varieties. If A is aprin
ipally polarized supersingular abelian variety over a �nite �eld F , then the Weil pairing êN ,for any positive integer N not divisible by the 
hara
teristi
 of F , is a Galois-equivariant non-degenerate bilinear map êN : A[N ℄� Â[N ℄ ! �N , where A[N ℄ is the N -torsion on A, Â[N ℄ is theN -torsion on the dual abelian variety, and �N is the group of N -th roots of unity. A prin
ipalpolarization then indu
es a map eN : A[N ℄ � A[N ℄ ! �N . When A is a supersingular Ja
obianvariety, Miller's algorithm [20℄ (see also Se
tion 5.1 of [17℄ for the 
ase of ellipti
 
urves) gives aneÆ
ient way to 
ompute the pairing. If P 2 A(F ) is a point of prime order `, and ' 2 End(A)sends P to an independent point of order `, then the modi�ed Weil pairing ê : G21 ! G2 de�ned byê(P1; P2) = e`(P1; '(P2)) is a 2-multilinear map in the sense of Se
tion 3, where G1 is the subgroupof A(F ) generated by P , and G2 is the group of `-th roots of unity.Maps that are algebrai
 (in the sense of being polynomial maps between algebrai
 varieties) areGalois-equivariant. If A and B are algebrai
 varieties, f : A! B is a morphism, A, B, and f arede�ned over a �eld F , andK is a Galois extension of F , we say that f is Gal(K=F )-equivariant if forall � 2 Gal(K=F ) and x 2 A(K), we have �(f(x)) = f(�(x)). If a map between algebrai
 varietiesis 
omputable, we would expe
t it to be de�ned by polynomial equations, i.e., to be algebrai
, andtherefore Galois-equivariant.Very roughly speaking, a motive over a �eld is something whose \realizations" behave as ifthey were the 
ohomology groups asso
iated to a variety. A

ording to 3.1 of [27℄, \one reasonfor Grothendie
k's introdu
tion of motives was to serve as analogues of the Ja
obian of a 
urve inhigher dimensions." See [13℄ for a treatment of motives over �nite �elds. We believe that our papergives the �rst appli
ation of the theory of motives to the �eld of 
ryptography. We expe
t thatthe motivi
 point of view will prove to be valuable in better understanding the mathemati
s thatunderlies publi
 key 
ryptography.If e : Gn1 ! �` is an n-multilinear map where G1 is a group of prime order ` that 
omesfrom geometry (or from a motive), then it might be reasonable to expe
t that the underlyinggeometri
 obje
t or motive would in fa
t give rise to a 
ompatible system of su
h maps that areGalois-equivariant, for all but �nitely many primes `. It is reasonable to expe
t su
h a map e to
ome about by restri
ting (to one-dimensional subspa
es) a multilinear and Galois-equivariant mapV n ! �`, where V is a �nite-dimensional F` -ve
tor spa
e with a Galois a
tion, 
oming from theGalois a
tion on the underlying geometri
 obje
t (or the `-adi
 realization of the motive). This isthe 
ase for Weil and Tate pairings on abelian varieties. (But note that, while the Weil pairingse` are all Galois-equivariant, the modi�ed pairing ê de�ned above only be
omes Galois-equivariantafter passing to a �eld where the endomorphism ' is de�ned.) We will give eviden
e that suggeststhat there is something spe
ial about pairings on abelian varieties that permits this to happen.7.1 PreliminariesWe begin with some notation. If F is a �eld and F s is a separable 
losure, let GF = Gal(F s=F ).Suppose N 2 Z+ and 
har(F ) - N . Write �N for the group of N -th roots of unity in F s. The
y
lotomi
 
hara
ter �N : GF ! (Z=NZ)�is de�ned by �(�) = ��N (�) for every � 2 GF and � 2 �N .14
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Remark 7.1. If V1; : : : ; Vn are �nite-dimensional F` -ve
tor spa
es, then there is a natural one-to-
orresponden
e between multilinear homomorphismsh : V1 � � � � � Vn ! �`and linear homomorphisms ~h : V1 
 � � � 
 Vn ! �`;with h(x1; : : : ; xn) = ~h(x1 
 : : :
 xn).Lemma 7.2. Suppose F = Fq , N and d are positive integers, 
har(F ) - N , and �N : GF !(Z=NZ)� is the 
y
lotomi
 
hara
ter. Then �N = �dN if and only if qd�1 � 1 is divisible by N .Proof. We have �N = �dN () �d�1N = 1 () d � 1 is divisible by the order of �N , whi
h is[F (�N ) : F ℄ where �N is a primitive N -th root of unity. Equivalently, �N 2 Fqd�1 , i.e., N dividesjFqd�1 j = qd�1 � 1.Note that when d = 1, the 
ondition that N divide qd�1 � 1 is trivially true. As we will seebelow, it is this 
ondition that makes n-multilinear forms spe
ial in the 
ase where n = 2.7.2 Tensor produ
ts of Weil pairingsWe next dis
uss a straightforward generalization of the Weil pairing, namely a tensor produ
t ofWeil pairings. The linearity is now obvious, as is the Galois-equivarian
e as a map from A[N ℄2r to�
rN . However, after 
omposing this map with an isomorphism �
rN ! �N , the resulting map fromA[N ℄2r to �N is Galois-equivariant if and only if qr�1 � 1 is divisible by N , where q is the size ofthe �nite �eld of de�nition.More pre
isely, suppose that F = Fq , that N and r are positive integers, that g
d(N; q) = 1,that A is a prin
ipally polarized abelian variety over F , and that eN : A[N ℄ � A[N ℄ ! �N is theWeil pairing indu
ed by a prin
ipal polarization on A. Then the form er;N : A[N ℄2r ! �
rN de�nedby er;N (P1; : : : ; Pr; Q1; : : : ; Qr) = eN (P1; Q1)
 � � � 
 eN (Pr; Qr)is multilinear and GF -equivariant.If r = 1, then er;N is the Weil pairing eN , and er;N is GF -equivariant, bilinear, and alternating.However, the situation is not so ni
e if r > 1. Fixing a generator � of �N , there is an isomorphismhr;N : �
rN ! �N , indu
ed by hr;N (�a1 
 � � � 
 �ar) = �a1���ar . By Lemma 7.2, the map hr;N is GF -equivariant if and only if qr�1�1 is divisible by N . Thus for �xed r > 1, the Galois-equivarian
e ofthe 
omposition hr;N Æ er;N holds for only �nitely many values of N . Therefore for r > 1, the mapshr;` Æ fr;` : A[`℄2r ! �` do not in any meaningful sense �t into a \
ompatible system" of mod `maps for in�nitely many primes `. Further, the isomorphism hr;N 
an only be 
omputed by solvinga DiÆe-Hellman-like problem, namely, given �a1 ; : : : ; �ar , �nd �a1���ar (without knowing a1; : : : ; ar).7.3 Alternating multilinear mapsWe next 
onsider alternating multilinear forms (the Weil pairing is one su
h). We show that ford-dimensional abelian varieties with d > 1, there are only �nitely many primes ` for whi
h a non-degenerate alternating multilinear form from A[`℄2d to �` 
an be Galois-equivariant. In other words,one only obtains a system of alternating, non-degenerate, Galois-equivariant multilinear forms fromA[`℄2d to �` for in�nitely many primes ` when the maps are bilinear pairings and A is an ellipti

urve. 15
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Lemma 7.3. Suppose V is an n-dimensional F` -ve
tor spa
e. Then:(a) there is a unique (up to s
aling) multilinear alternating form f : V n � �`;(b) if F = Fq , ` - q, and � : GF ! Aut(V ) is a homomorphism de�ning a Galois a
tion on V ,then f is GF -equivariant if and only if �` = det(�), where �` : GF ! F�̀ is the 
y
lotomi

hara
ter.Proof. It is well-known that the set of alternating n-multilinear maps from an n-dimensional ve
torspa
e to a one-dimensional ve
tor spa
e is one-dimensional. We thus have (a). Fix a generator �of �` and a basis fv1; : : : ; vng of V over F` . De�nef(w1; : : : ; wn) = �detAwith wi = Pnj=1 aijvj for i = 1; : : : ; n and A = (aij) 2 Mn(F`). Then f is multilinear andalternating, and is the unique su
h map, up to the 
hoi
e of generator and basis. Now f is GF -equivariant if and only if for every � 2 GF , we have �(f(v1; : : : ; vn)) = f(�(v1); : : : ; �(vn)). Sin
e�(f(v1; : : : ; vn)) = �(�) = ��`(�) andf(�(v1); : : : ; �(vn)) = f(�(�)(v1); : : : ; �(�)(vn)) = �det �(�);we have (b).Proposition 7.4. Suppose that ` is prime, that F = Fq , that ` - q, that A is a d-dimensionalabelian variety over F , and that V = A[`℄ is the GF -module of `-torsion on A. Then the alternatingmultilinear form f de�ned in Lemma 7.3(a) above (with n = 2d) is GF -equivariant if and only ifqd�1 � 1 is divisible by `.Proof. Let � : GF ! Aut(V ) be the mod ` representation for A. Writing � for the Frobeniuselement of GF , then det �(�) is the 
onstant term in the 
hara
teristi
 polynomial of � a
ting onA[`℄, so det �(�) = qd = �`(�)d. Sin
e � generates GF , we have det � = �d̀. The result now followsfrom Lemmas 7.3(b) and 7.2.From the point of view of 
ryptography, one problem with the above alternating map f is thatto 
ompute it one must express elements of V in terms of the basis fv1; : : : ; vng, and this amounts tosolving the dis
rete log problem. For example, if fP1; : : : ; P2dg is an F` -basis for A[`℄, and Q = nP1,then to 
ompute f(Q;Q2; : : : ; Q2d) one begins by trying to 
ompute n, whi
h is the dis
rete log ofQ with respe
t to P1.Another problem is that Proposition 7.4 provides eviden
e that when d > 1, this form f is nota very natural map, and therefore is not likely to be easily 
omputable. In parti
ular, for �xed A(and therefore q and d), these maps are Galois-equivariant for only �nitely many primes `. Thoughthese maps are de�ned on an algebrai
 obje
t, namely an abelian variety, they are not in generalthemselves algebrai
, sin
e they are not in general Galois-equivariant. We elaborate on this furtherin what follows.7.4 MotivesFrom now on, we 
onsider forms that are not ne
essarily alternating. In Corollary 7.7 we willshow that if the desired n-multilinear map 
omes from a motive over a �nite �eld, and is part ofa system of Galois-equivariant mod ` maps for in�nitely many primes `, then n = 1 or 2 (and16



www.manaraa.com

the motive has weight 2 or 1, respe
tively). For n = 1, the identity isomorphism �` ! �` givestrivial 1-multilinear maps of weight 2 motives. Weil or Tate pairings on abelian varieties give riseto 2-multilinear maps of weight 1 motives. Note (Remark 2.7 of [21℄) that the 
ategory of motivesover �nite �elds is generated by Artin motives (whi
h have weight 0) and abelian varieties (whi
hhave weight 1). Corollary 7.7 provides eviden
e that the desired forms will be motivi
 only in the
ase of bilinear pairings on abelian varieties and in trivial 
ases.As alluded to in x7.2, it is not easy to tell when two elements of �
n` are the same, if n > 1. Forpurposes of 
ryptography, we will therefore only 
onsider the 
ases where the range is �`, Z=`Z, orHom(�`;Z=`Z) in what follows.Theorem 7.5. Suppose that ` is prime, that F = Fq , that ` - q, and that V1; : : : ; Vn are �nite-dimensional F` -ve
tor spa
es with GF -a
tions. Write � for the Frobenius element of GF . Supposef : V1 � � � � � Vn � �` is multilinear and GF -equivariant. Then there are �1; : : : ; �n 2 �F` su
hthat �1 � � ��n = q and for ea
h i, �i is an eigenvalue of � a
ting on Vi. If �` is repla
ed by Z=`Z(respe
tively, Hom(�`;Z=`Z)), then q is repla
ed by 1 (respe
tively, 1=q) in the 
on
lusion.Proof. The multilinear map f gives rise to a linear map ~f : V1 
 � � � 
 Vn � �`, as in Remark 7.1.Sin
e f is GF -equivariant, we have~f Æ �
n(x1 
 � � � 
 xn) = ~f(�(x1)
 � � � 
 �(xn))= � Æ ~f(x1 
 � � � 
 xn) = ~f(x1 
 � � � 
 xn)q:Therefore, ~f(�
n � q)(x1 
 � � � 
 xn) = 0 for all xi 2 Vi and 1 � i � n. Sin
e ~f 6= 0, the map�
n� q does not surje
t onto V1
 � � � 
Vn, and thus is not inje
tive. Therefore, q is an eigenvalueof �
n. By Proposition 11 on p. A.VII.39 of [5℄ and indu
tion, the set of eigenvalues of �
n isf�1 � � ��n : �i is an eigenvalue for the a
tion of � on Vig:Sin
e the Galois a
tion on Z=`Z is trivial, q is repla
ed by 1 in the above, if �` is repla
ed by Z=`Z.Similarly, q is repla
ed by 1=q if �` is repla
ed by its dual.As a spe
ial 
ase, note that if F = Fq , ` - q, V is an n-dimensional F` -ve
tor spa
e with a GF -a
tion, f : V n � �` is multilinear, alternating, and GF -equivariant, and S is the set of eigenvaluesof the a
tion of � on V , then Lemma 7.3 shows that Q�2S �n� = q, where n� is the multipli
ity of� as an eigenvalue.Corollary 7.6. Suppose M1; : : : ;Mn are motives over F = Fq that are homogeneous of weightsm1; : : : ;mn, respe
tively. Assume the Tate Conje
ture holds for �-fun
tions of smooth proje
tivevarieties over �nite �elds (see (1.14) of [21℄). If ` is prime and ` - q, let (Mi)` be the mod `realization of Mi. Suppose S is an in�nite set of primes ` su
h that ` - q and su
h that there is aGF -equivariant multilinear homomorphism f` : (M1)`�� � ��(Mn)` � �`. Then m1+ � � �+mn = 2.If �` is repla
ed by Z=`Z (respe
tively, Hom(�`;Z=`Z)), then m1+ � � �+mn = 0 (respe
tively, �2).Proof. Write Si � �Q for the set of eigenvalues of Frobenius a
ting on Mi. Let T be the �nite setT = fq � �1 � � ��n : �i 2 Sig � �Q :By Proposition 2.2 of [21℄, j�ij = qmi=2 (this follows from the Weil Conje
tures, proved by Delignein [7℄). Thus, j�1�2 � � ��nj = q(m1+���+mn)=2. Suppose m1 + � � � +mn 6= 2. Then 0 =2 T . Thereforethere are only �nitely many prime ideals of the ring �Z of algebrai
 integers that divide elements ofthe �nite set T . However, by Theorem 7.5, for every ` 2 S there is a prime ideal of �Z above ` thatdivides some element of T . Thus, S is �nite. To �nish the proof, repla
e q by 1 (resp., 1=q) in thede�nition of T . 17
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Corollary 7.7. Suppose M is a motive over F = Fq that is homogeneous of weight m. Assumethe Tate Conje
ture holds for �-fun
tions of smooth proje
tive varieties over �nite �elds (see (1.14)of [21℄). If ` is prime and ` - q, let M` be the mod ` realization of M . Suppose S is an in�niteset of primes ` su
h that ` - q and su
h that there is a GF -equivariant multilinear homomorphismf` : M ǹ � �`. Then (m;n) = (2; 1) or (1; 2). If �` is repla
ed by Z=`Z, then m = 0. If �` isrepla
ed by Hom(�`;Z=`Z), then (m;n) = (�2; 1) or (�1; 2).7.5 Tate pairingsWe end with a brief dis
ussion of Tate pairings (see Se
tion 3.3 of [9℄ for more information). Supposethat F = Fq , that K = Fqm , that ` is a prime divisor of qm � 1, and that J is the Ja
obian ofa 
urve of genus � 1 de�ned over F . Then the Tate (or Tate-Li
htenbaum) pairing indu
es anon-degenerate Gal(K=F )-equivariant bilinear pairingh ; i : J(K)[`℄� J(K)[`℄! �` � K:If P 2 J(K)[`℄ and G1 is the group generated by P , then this pairing indu
es a Gal(K=F )-equivariant pairing h ; i : G1 �G1 ! �`:If J is supersingular, this map is eÆ
iently 
omputable. Note that the Weil pairing is invariantunder �eld extension, while the Tate pairing is not | 
hanging the �eld K 
hanges the map.Therefore in at least one way, the Tate pairing 
an be viewed as a less natural map. This augerswell for the idea that useful pairings in 
ryptography 
ould 
ome from geometry, and yet not haveall possible seemingly good properties (su
h as Galois-equivarian
e). We therefore 
on
lude on theoptimisti
 note that interesting geometri
 obje
ts 
ould still lead to useful n-multilinear maps withn > 2.8 Con
lusionsWe gave strong motivation for 
onstru
ting 
ryptographi
 n-multilinear maps. We showed thatsu
h maps give low-bandwidth broad
ast en
ryption s
hemes, unique signature s
hemes, veri�ablepseudo random fun
tions, and a one-round 
onferen
e key ex
hange proto
ol. We hope this amplemotivation will eventually lead to an eÆ
ient 
onstru
tion for a 
ryptographi
 multilinear map. Wealso give eviden
e that su
h maps might have to either 
ome from outside the realm of algebrai
geometry, or o

ur as \unnatural" 
omputable maps arising from geometry.A
knowledgmentsThe authors would like to thank Karl Rubin, Bjorn Poonen, and Joe Buhler for helpful dis
ussions.Referen
es[1℄ M. Bellare, P. Rogaway, \Random ora
les are pra
ti
al: a paradigm for designing eÆ
ientproto
ols", in ACM Conferen
e on Computers and Communi
ation Se
urity, pp. 62{73,1993. 18



www.manaraa.com

[2℄ D. Boneh, \The de
ision DiÆe-Hellman problem", in Pro
eedings of the Third Algorith-mi
 Number Theory Symposium, Le
ture Notes in Computer S
ien
e, Vol. 1423, Springer,pp. 48{63, 1998.[3℄ D. Boneh, M. Franklin, \Identity based en
ryption from the Weil pairing", Le
ture Notesin Computer S
ien
e, Vol. 2139, Springer, pp. 213-229, 2001.[4℄ D. Boneh, B. Lynn, and H. Sha
ham, \Short Signatures from the Weil Pairing", Pro
. ofAsia
rypt 2001, Le
ture Notes in Computer S
ien
e, Vol. 2248, pp. 514-532, Springer, 2001.[5℄ N. Bourbaki, Elements of Mathemati
s, Algebra II, Chapters 4{7, Springer, 1990.[6℄ G. Chi
k, S. Tavares, \Flexible a

ess 
ontrol with master keys", in Pro
. Crypto '89,pp. 316{322.[7℄ P. Deligne, \La 
onje
ture de Weil. I", Inst. Hautes �Etudes S
i. Publ. Math. 43 (1974),273{307.[8℄ A. Fiat and M. Naor, \Broad
ast en
ryption", in Pro
. Crypto '93, pp. 480{491.[9℄ G. Frey, \Appli
ations of arithmeti
al geometry to 
ryptographi
 
onstru
tions", in Finite�elds and appli
ations (Augsburg, 1999), Springer, 2001, pp. 128{161.[10℄ S. Goldwasser, S. Mi
ali, R. Rivest, \A digital signature s
heme se
ure against adaptive
hosen message atta
ks", SIAM J. of Computing, Vol. 17, No. 2, pp. 281-308, April 1988.[11℄ S. Goldwasser, R. Ostrovsky, \Invariant signatures and non-intera
tive zero knowledgeproofs are equivalent", in Pro
. Crypto '92, Springer-Verlag LNCS Vol. 740, pp. 228{244,1992.[12℄ D. Halevi, A. Shamir, \The LSD broad
ast en
ryption s
heme", to appear in Pro
. Crypto2002.[13℄ U. Jannsen, S. Kleiman, J-P. Serre (eds.), Motives, Pro
. Sump. Pure Math., vol. 55, Amer.Math. So
., 1994, part 1.[14℄ A. Joux, \A one round proto
ol for tripartite DiÆe-Hellman", Pro
. ANTS 4, Le
ture Notesin Computer S
ien
e, Vol. 1838, pp. 385{394, 2000.[15℄ A. Joux, K. Nguyen, \Separating De
ision DiÆe-Hellman from DiÆe-Hellman in 
rypto-graphi
 groups", available from eprint.ia
r.org.[16℄ A. Lysyanskaya, \Unique signatures and veri�able random fun
tions from DH-DDH sepa-ration", to appear in Crypto 2002.[17℄ A. Menezes, Ellipti
 
urve publi
 key 
ryptosystems, Kluwer A
ademi
 Publishers, Boston,MA, 1993.[18℄ A. Menezes, T. Okamoto, S. Vanstone, \Redu
ing ellipti
 
urve logarithms to logarithmsin a �nite �eld", IEEE Tran. on Info. Th., Vol. 39, pp. 1639{1646, 1993.[19℄ S. Mi
ali, M. Rabin, S. Vadhan, \Veri�able Random Fun
tions", in Pro
. FOCS `99,pp. 120{130, 1999. 19



www.manaraa.com

[20℄ V. Miller, \Short programs for fun
tions on 
urves", unpublished manus
ript.[21℄ J. Milne, \Motives over �nite �elds", in [13℄, pp. 401{459.[22℄ D. Naor, M. Naor, J. Lotspie
h, \Revo
ation and Tra
ing S
hemes for Stateless Re
eivers",in Pro
. Crypto 2001, Le
ture Notes in Computer S
ien
e, Vol. 2139, pp. 41{62, 2001.[23℄ M. Naor, O. Reingold, \Number theoreti
 
onstru
tions for eÆ
ient pseudo random fun
-tions", in pro
. 38th IEEE Symposium on Foundations of Computer S
ien
e (FOCS), 1997.[24℄ S. Pohlig, M. Hellman, \An improved algorithm for 
omputing dis
rete logarithms overGF (p) and its 
ryptographi
 signi�
an
e", IEEE Transa
tions on Information Theory, Vol.24, pp. 106{110, 1978.[25℄ K. Rubin, A. Silverberg, \Supersingular abelian varieties in 
ryptology", to appear in Pro
.Crypto 2002.[26℄ R. Sakai, K. Ohgishi, M. Kasahara, \Cryptosystems based on pairing", SCIC 2000-C20,Okinawa, Japan, January 2000.[27℄ A. J. S
holl, \Classi
al motives", in [13℄, pp. 401{459.[28℄ M. Steiner, G. Tsudik, M. Waidner, \DiÆe-Hellman key distribution extended to group
ommuni
ation", in Pro
. 3rd ACM Conferen
e on Communi
ations Se
urity, pp. 31{37,1996.

20


